| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem29.1 |
|- F/_ t F |
| 2 |
|
stoweidlem29.2 |
|- F/ t ph |
| 3 |
|
stoweidlem29.3 |
|- T = U. J |
| 4 |
|
stoweidlem29.4 |
|- K = ( topGen ` ran (,) ) |
| 5 |
|
stoweidlem29.5 |
|- ( ph -> J e. Comp ) |
| 6 |
|
stoweidlem29.6 |
|- ( ph -> F e. ( J Cn K ) ) |
| 7 |
|
stoweidlem29.7 |
|- ( ph -> T =/= (/) ) |
| 8 |
|
eqid |
|- ( J Cn K ) = ( J Cn K ) |
| 9 |
4 3 8 6
|
fcnre |
|- ( ph -> F : T --> RR ) |
| 10 |
|
df-f |
|- ( F : T --> RR <-> ( F Fn T /\ ran F C_ RR ) ) |
| 11 |
9 10
|
sylib |
|- ( ph -> ( F Fn T /\ ran F C_ RR ) ) |
| 12 |
11
|
simprd |
|- ( ph -> ran F C_ RR ) |
| 13 |
11
|
simpld |
|- ( ph -> F Fn T ) |
| 14 |
|
fnfun |
|- ( F Fn T -> Fun F ) |
| 15 |
13 14
|
syl |
|- ( ph -> Fun F ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ s e. T ) -> Fun F ) |
| 17 |
9
|
fdmd |
|- ( ph -> dom F = T ) |
| 18 |
17
|
eqcomd |
|- ( ph -> T = dom F ) |
| 19 |
18
|
eleq2d |
|- ( ph -> ( s e. T <-> s e. dom F ) ) |
| 20 |
19
|
biimpa |
|- ( ( ph /\ s e. T ) -> s e. dom F ) |
| 21 |
|
fvelrn |
|- ( ( Fun F /\ s e. dom F ) -> ( F ` s ) e. ran F ) |
| 22 |
16 20 21
|
syl2anc |
|- ( ( ph /\ s e. T ) -> ( F ` s ) e. ran F ) |
| 23 |
|
nfcv |
|- F/_ t s |
| 24 |
1 23
|
nffv |
|- F/_ t ( F ` s ) |
| 25 |
24
|
nfeq2 |
|- F/ t x = ( F ` s ) |
| 26 |
|
breq1 |
|- ( x = ( F ` s ) -> ( x <_ ( F ` t ) <-> ( F ` s ) <_ ( F ` t ) ) ) |
| 27 |
25 26
|
ralbid |
|- ( x = ( F ` s ) -> ( A. t e. T x <_ ( F ` t ) <-> A. t e. T ( F ` s ) <_ ( F ` t ) ) ) |
| 28 |
27
|
rspcev |
|- ( ( ( F ` s ) e. ran F /\ A. t e. T ( F ` s ) <_ ( F ` t ) ) -> E. x e. ran F A. t e. T x <_ ( F ` t ) ) |
| 29 |
22 28
|
sylan |
|- ( ( ( ph /\ s e. T ) /\ A. t e. T ( F ` s ) <_ ( F ` t ) ) -> E. x e. ran F A. t e. T x <_ ( F ` t ) ) |
| 30 |
|
nfcv |
|- F/_ s F |
| 31 |
|
nfcv |
|- F/_ s T |
| 32 |
|
nfcv |
|- F/_ t T |
| 33 |
30 1 31 32 3 4 5 6 7
|
evth2f |
|- ( ph -> E. s e. T A. t e. T ( F ` s ) <_ ( F ` t ) ) |
| 34 |
29 33
|
r19.29a |
|- ( ph -> E. x e. ran F A. t e. T x <_ ( F ` t ) ) |
| 35 |
|
nfv |
|- F/ y ( ph /\ A. t e. T x <_ ( F ` t ) ) |
| 36 |
|
simpr |
|- ( ( ( ph /\ A. t e. T x <_ ( F ` t ) ) /\ y e. ran F ) -> y e. ran F ) |
| 37 |
13
|
ad2antrr |
|- ( ( ( ph /\ A. t e. T x <_ ( F ` t ) ) /\ y e. ran F ) -> F Fn T ) |
| 38 |
|
nfcv |
|- F/_ t y |
| 39 |
32 38 1
|
fvelrnbf |
|- ( F Fn T -> ( y e. ran F <-> E. t e. T ( F ` t ) = y ) ) |
| 40 |
37 39
|
syl |
|- ( ( ( ph /\ A. t e. T x <_ ( F ` t ) ) /\ y e. ran F ) -> ( y e. ran F <-> E. t e. T ( F ` t ) = y ) ) |
| 41 |
36 40
|
mpbid |
|- ( ( ( ph /\ A. t e. T x <_ ( F ` t ) ) /\ y e. ran F ) -> E. t e. T ( F ` t ) = y ) |
| 42 |
|
nfra1 |
|- F/ t A. t e. T x <_ ( F ` t ) |
| 43 |
2 42
|
nfan |
|- F/ t ( ph /\ A. t e. T x <_ ( F ` t ) ) |
| 44 |
1
|
nfrn |
|- F/_ t ran F |
| 45 |
44
|
nfcri |
|- F/ t y e. ran F |
| 46 |
43 45
|
nfan |
|- F/ t ( ( ph /\ A. t e. T x <_ ( F ` t ) ) /\ y e. ran F ) |
| 47 |
|
nfv |
|- F/ t x <_ y |
| 48 |
|
rspa |
|- ( ( A. t e. T x <_ ( F ` t ) /\ t e. T ) -> x <_ ( F ` t ) ) |
| 49 |
|
breq2 |
|- ( ( F ` t ) = y -> ( x <_ ( F ` t ) <-> x <_ y ) ) |
| 50 |
48 49
|
syl5ibcom |
|- ( ( A. t e. T x <_ ( F ` t ) /\ t e. T ) -> ( ( F ` t ) = y -> x <_ y ) ) |
| 51 |
50
|
ex |
|- ( A. t e. T x <_ ( F ` t ) -> ( t e. T -> ( ( F ` t ) = y -> x <_ y ) ) ) |
| 52 |
51
|
ad2antlr |
|- ( ( ( ph /\ A. t e. T x <_ ( F ` t ) ) /\ y e. ran F ) -> ( t e. T -> ( ( F ` t ) = y -> x <_ y ) ) ) |
| 53 |
46 47 52
|
rexlimd |
|- ( ( ( ph /\ A. t e. T x <_ ( F ` t ) ) /\ y e. ran F ) -> ( E. t e. T ( F ` t ) = y -> x <_ y ) ) |
| 54 |
41 53
|
mpd |
|- ( ( ( ph /\ A. t e. T x <_ ( F ` t ) ) /\ y e. ran F ) -> x <_ y ) |
| 55 |
54
|
ex |
|- ( ( ph /\ A. t e. T x <_ ( F ` t ) ) -> ( y e. ran F -> x <_ y ) ) |
| 56 |
35 55
|
ralrimi |
|- ( ( ph /\ A. t e. T x <_ ( F ` t ) ) -> A. y e. ran F x <_ y ) |
| 57 |
56
|
ex |
|- ( ph -> ( A. t e. T x <_ ( F ` t ) -> A. y e. ran F x <_ y ) ) |
| 58 |
57
|
reximdv |
|- ( ph -> ( E. x e. ran F A. t e. T x <_ ( F ` t ) -> E. x e. ran F A. y e. ran F x <_ y ) ) |
| 59 |
34 58
|
mpd |
|- ( ph -> E. x e. ran F A. y e. ran F x <_ y ) |
| 60 |
|
lbinfcl |
|- ( ( ran F C_ RR /\ E. x e. ran F A. y e. ran F x <_ y ) -> inf ( ran F , RR , < ) e. ran F ) |
| 61 |
12 59 60
|
syl2anc |
|- ( ph -> inf ( ran F , RR , < ) e. ran F ) |
| 62 |
12 61
|
sseldd |
|- ( ph -> inf ( ran F , RR , < ) e. RR ) |
| 63 |
12
|
adantr |
|- ( ( ph /\ t e. T ) -> ran F C_ RR ) |
| 64 |
59
|
adantr |
|- ( ( ph /\ t e. T ) -> E. x e. ran F A. y e. ran F x <_ y ) |
| 65 |
|
dffn3 |
|- ( F Fn T <-> F : T --> ran F ) |
| 66 |
13 65
|
sylib |
|- ( ph -> F : T --> ran F ) |
| 67 |
66
|
ffvelcdmda |
|- ( ( ph /\ t e. T ) -> ( F ` t ) e. ran F ) |
| 68 |
|
lbinfle |
|- ( ( ran F C_ RR /\ E. x e. ran F A. y e. ran F x <_ y /\ ( F ` t ) e. ran F ) -> inf ( ran F , RR , < ) <_ ( F ` t ) ) |
| 69 |
63 64 67 68
|
syl3anc |
|- ( ( ph /\ t e. T ) -> inf ( ran F , RR , < ) <_ ( F ` t ) ) |
| 70 |
69
|
ex |
|- ( ph -> ( t e. T -> inf ( ran F , RR , < ) <_ ( F ` t ) ) ) |
| 71 |
2 70
|
ralrimi |
|- ( ph -> A. t e. T inf ( ran F , RR , < ) <_ ( F ` t ) ) |
| 72 |
61 62 71
|
3jca |
|- ( ph -> ( inf ( ran F , RR , < ) e. ran F /\ inf ( ran F , RR , < ) e. RR /\ A. t e. T inf ( ran F , RR , < ) <_ ( F ` t ) ) ) |