Description: This lemma is used to prove the existence of a function p as in Lemma 1 BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 <= p <= 1, p__(t_0) = 0, and p > 0 on T - U. Z is used for t_0, P is used for p, ( Gi ) is used for p__(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem30.1 | |
|
stoweidlem30.2 | |
||
stoweidlem30.3 | |
||
stoweidlem30.4 | |
||
stoweidlem30.5 | |
||
Assertion | stoweidlem30 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem30.1 | |
|
2 | stoweidlem30.2 | |
|
3 | stoweidlem30.3 | |
|
4 | stoweidlem30.4 | |
|
5 | stoweidlem30.5 | |
|
6 | eleq1 | |
|
7 | 6 | anbi2d | |
8 | fveq2 | |
|
9 | fveq2 | |
|
10 | 9 | sumeq2sdv | |
11 | 10 | oveq2d | |
12 | 8 11 | eqeq12d | |
13 | 7 12 | imbi12d | |
14 | fveq2 | |
|
15 | 14 | sumeq2sdv | |
16 | 15 | oveq2d | |
17 | simpr | |
|
18 | 3 | nnrecred | |
19 | 18 | adantr | |
20 | fzfid | |
|
21 | 1 4 5 | stoweidlem15 | |
22 | 21 | simp1d | |
23 | 22 | an32s | |
24 | 20 23 | fsumrecl | |
25 | 19 24 | remulcld | |
26 | 2 16 17 25 | fvmptd3 | |
27 | 13 26 | vtoclg | |
28 | 27 | anabsi7 | |