Metamath Proof Explorer


Theorem stoweidlem30

Description: This lemma is used to prove the existence of a function p as in Lemma 1 BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 <= p <= 1, p__(t_0) = 0, and p > 0 on T - U. Z is used for t_0, P is used for p, ( Gi ) is used for p__(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem30.1 Q=hA|hZ=0tT0htht1
stoweidlem30.2 P=tT1Mi=1MGit
stoweidlem30.3 φM
stoweidlem30.4 φG:1MQ
stoweidlem30.5 φfAf:T
Assertion stoweidlem30 φSTPS=1Mi=1MGiS

Proof

Step Hyp Ref Expression
1 stoweidlem30.1 Q=hA|hZ=0tT0htht1
2 stoweidlem30.2 P=tT1Mi=1MGit
3 stoweidlem30.3 φM
4 stoweidlem30.4 φG:1MQ
5 stoweidlem30.5 φfAf:T
6 eleq1 s=SsTST
7 6 anbi2d s=SφsTφST
8 fveq2 s=SPs=PS
9 fveq2 s=SGis=GiS
10 9 sumeq2sdv s=Si=1MGis=i=1MGiS
11 10 oveq2d s=S1Mi=1MGis=1Mi=1MGiS
12 8 11 eqeq12d s=SPs=1Mi=1MGisPS=1Mi=1MGiS
13 7 12 imbi12d s=SφsTPs=1Mi=1MGisφSTPS=1Mi=1MGiS
14 fveq2 t=sGit=Gis
15 14 sumeq2sdv t=si=1MGit=i=1MGis
16 15 oveq2d t=s1Mi=1MGit=1Mi=1MGis
17 simpr φsTsT
18 3 nnrecred φ1M
19 18 adantr φsT1M
20 fzfid φsT1MFin
21 1 4 5 stoweidlem15 φi1MsTGis0GisGis1
22 21 simp1d φi1MsTGis
23 22 an32s φsTi1MGis
24 20 23 fsumrecl φsTi=1MGis
25 19 24 remulcld φsT1Mi=1MGis
26 2 16 17 25 fvmptd3 φsTPs=1Mi=1MGis
27 13 26 vtoclg STφSTPS=1Mi=1MGiS
28 27 anabsi7 φSTPS=1Mi=1MGiS