Metamath Proof Explorer


Theorem stoweidlem15

Description: This lemma is used to prove the existence of a function p as in Lemma 1 from BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 ≤ p ≤ 1, p__(t_0) = 0, and p > 0 on T - U. Here ( GI ) is used to represent p__(t_i) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem15.1 Q=hA|hZ=0tT0htht1
stoweidlem15.3 φG:1MQ
stoweidlem15.4 φfAf:T
Assertion stoweidlem15 φI1MSTGIS0GISGIS1

Proof

Step Hyp Ref Expression
1 stoweidlem15.1 Q=hA|hZ=0tT0htht1
2 stoweidlem15.3 φG:1MQ
3 stoweidlem15.4 φfAf:T
4 simpl φI1Mφ
5 2 ffvelcdmda φI1MGIQ
6 elrabi GIhA|hZ=0tT0htht1GIA
7 6 1 eleq2s GIQGIA
8 5 7 syl φI1MGIA
9 eleq1 f=GIfAGIA
10 9 anbi2d f=GIφfAφGIA
11 feq1 f=GIf:TGI:T
12 10 11 imbi12d f=GIφfAf:TφGIAGI:T
13 12 3 vtoclg GIAφGIAGI:T
14 8 13 syl φI1MφGIAGI:T
15 4 8 14 mp2and φI1MGI:T
16 15 ffvelcdmda φI1MSTGIS
17 5 1 eleqtrdi φI1MGIhA|hZ=0tT0htht1
18 fveq1 h=GIhZ=GIZ
19 18 eqeq1d h=GIhZ=0GIZ=0
20 fveq1 h=GIht=GIt
21 20 breq2d h=GI0ht0GIt
22 20 breq1d h=GIht1GIt1
23 21 22 anbi12d h=GI0htht10GItGIt1
24 23 ralbidv h=GItT0htht1tT0GItGIt1
25 19 24 anbi12d h=GIhZ=0tT0htht1GIZ=0tT0GItGIt1
26 25 elrab GIhA|hZ=0tT0htht1GIAGIZ=0tT0GItGIt1
27 17 26 sylib φI1MGIAGIZ=0tT0GItGIt1
28 27 simprd φI1MGIZ=0tT0GItGIt1
29 28 simprd φI1MtT0GItGIt1
30 fveq2 s=tGIs=GIt
31 30 breq2d s=t0GIs0GIt
32 30 breq1d s=tGIs1GIt1
33 31 32 anbi12d s=t0GIsGIs10GItGIt1
34 33 cbvralvw sT0GIsGIs1tT0GItGIt1
35 fveq2 s=SGIs=GIS
36 35 breq2d s=S0GIs0GIS
37 35 breq1d s=SGIs1GIS1
38 36 37 anbi12d s=S0GIsGIs10GISGIS1
39 38 rspccva sT0GIsGIs1ST0GISGIS1
40 34 39 sylanbr tT0GItGIt1ST0GISGIS1
41 29 40 sylan φI1MST0GISGIS1
42 41 simpld φI1MST0GIS
43 41 simprd φI1MSTGIS1
44 16 42 43 3jca φI1MSTGIS0GISGIS1