Description: This lemma is used to prove the existence of a function p as in Lemma 1 from BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 ≤ p ≤ 1, p__(t_0) = 0, and p > 0 on T - U. Here ( GI ) is used to represent p__(t_i) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem15.1 | |
|
stoweidlem15.3 | |
||
stoweidlem15.4 | |
||
Assertion | stoweidlem15 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem15.1 | |
|
2 | stoweidlem15.3 | |
|
3 | stoweidlem15.4 | |
|
4 | simpl | |
|
5 | 2 | ffvelcdmda | |
6 | elrabi | |
|
7 | 6 1 | eleq2s | |
8 | 5 7 | syl | |
9 | eleq1 | |
|
10 | 9 | anbi2d | |
11 | feq1 | |
|
12 | 10 11 | imbi12d | |
13 | 12 3 | vtoclg | |
14 | 8 13 | syl | |
15 | 4 8 14 | mp2and | |
16 | 15 | ffvelcdmda | |
17 | 5 1 | eleqtrdi | |
18 | fveq1 | |
|
19 | 18 | eqeq1d | |
20 | fveq1 | |
|
21 | 20 | breq2d | |
22 | 20 | breq1d | |
23 | 21 22 | anbi12d | |
24 | 23 | ralbidv | |
25 | 19 24 | anbi12d | |
26 | 25 | elrab | |
27 | 17 26 | sylib | |
28 | 27 | simprd | |
29 | 28 | simprd | |
30 | fveq2 | |
|
31 | 30 | breq2d | |
32 | 30 | breq1d | |
33 | 31 32 | anbi12d | |
34 | 33 | cbvralvw | |
35 | fveq2 | |
|
36 | 35 | breq2d | |
37 | 35 | breq1d | |
38 | 36 37 | anbi12d | |
39 | 38 | rspccva | |
40 | 34 39 | sylanbr | |
41 | 29 40 | sylan | |
42 | 41 | simpld | |
43 | 41 | simprd | |
44 | 16 42 43 | 3jca | |