| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem16.1 |
|
| 2 |
|
stoweidlem16.2 |
|
| 3 |
|
stoweidlem16.3 |
|
| 4 |
|
stoweidlem16.4 |
|
| 5 |
|
stoweidlem16.5 |
|
| 6 |
|
simp1 |
|
| 7 |
|
fveq1 |
|
| 8 |
7
|
breq2d |
|
| 9 |
7
|
breq1d |
|
| 10 |
8 9
|
anbi12d |
|
| 11 |
10
|
ralbidv |
|
| 12 |
11 2
|
elrab2 |
|
| 13 |
12
|
simplbi |
|
| 14 |
13
|
3ad2ant2 |
|
| 15 |
|
fveq1 |
|
| 16 |
15
|
breq2d |
|
| 17 |
15
|
breq1d |
|
| 18 |
16 17
|
anbi12d |
|
| 19 |
18
|
ralbidv |
|
| 20 |
19 2
|
elrab2 |
|
| 21 |
20
|
simplbi |
|
| 22 |
21
|
3ad2ant3 |
|
| 23 |
6 14 22 5
|
syl3anc |
|
| 24 |
3 23
|
eqeltrid |
|
| 25 |
|
nfra1 |
|
| 26 |
|
nfcv |
|
| 27 |
25 26
|
nfrabw |
|
| 28 |
2 27
|
nfcxfr |
|
| 29 |
28
|
nfcri |
|
| 30 |
28
|
nfcri |
|
| 31 |
1 29 30
|
nf3an |
|
| 32 |
6 14
|
jca |
|
| 33 |
32
|
adantr |
|
| 34 |
33 4
|
syl |
|
| 35 |
|
simpr |
|
| 36 |
34 35
|
ffvelcdmd |
|
| 37 |
6 22
|
jca |
|
| 38 |
|
eleq1w |
|
| 39 |
38
|
anbi2d |
|
| 40 |
|
feq1 |
|
| 41 |
39 40
|
imbi12d |
|
| 42 |
41 4
|
vtoclg |
|
| 43 |
22 37 42
|
sylc |
|
| 44 |
43
|
ffvelcdmda |
|
| 45 |
12
|
simprbi |
|
| 46 |
45
|
3ad2ant2 |
|
| 47 |
46
|
r19.21bi |
|
| 48 |
47
|
simpld |
|
| 49 |
20
|
simprbi |
|
| 50 |
49
|
3ad2ant3 |
|
| 51 |
50
|
r19.21bi |
|
| 52 |
51
|
simpld |
|
| 53 |
36 44 48 52
|
mulge0d |
|
| 54 |
36 44
|
remulcld |
|
| 55 |
3
|
fvmpt2 |
|
| 56 |
35 54 55
|
syl2anc |
|
| 57 |
53 56
|
breqtrrd |
|
| 58 |
|
1red |
|
| 59 |
47
|
simprd |
|
| 60 |
51
|
simprd |
|
| 61 |
36 58 44 58 48 52 59 60
|
lemul12ad |
|
| 62 |
|
1t1e1 |
|
| 63 |
61 62
|
breqtrdi |
|
| 64 |
56 63
|
eqbrtrd |
|
| 65 |
57 64
|
jca |
|
| 66 |
65
|
ex |
|
| 67 |
31 66
|
ralrimi |
|
| 68 |
|
nfmpt1 |
|
| 69 |
3 68
|
nfcxfr |
|
| 70 |
69
|
nfeq2 |
|
| 71 |
|
fveq1 |
|
| 72 |
71
|
breq2d |
|
| 73 |
71
|
breq1d |
|
| 74 |
72 73
|
anbi12d |
|
| 75 |
70 74
|
ralbid |
|
| 76 |
75
|
elrab |
|
| 77 |
24 67 76
|
sylanbrc |
|
| 78 |
77 2
|
eleqtrrdi |
|