Metamath Proof Explorer


Theorem stoweid

Description: This theorem proves the Stone-Weierstrass theorem for real-valued functions: let J be a compact topology on T , and C be the set of real continuous functions on T . Assume that A is a subalgebra of C (closed under addition and multiplication of functions) containing constant functions and discriminating points (if r and t are distinct points in T , then there exists a function h in A such that h(r) is distinct from h(t) ). Then, for any continuous function F and for any positive real E , there exists a function f in the subalgebra A , such that f approximates F up to E ( E represents the usual ε value). As a classical example, given any a, b reals, the closed interval T = [ a , b ] could be taken, along with the subalgebra A of real polynomials on T , and then use this theorem to easily prove that real polynomials are dense in the standard metric space of continuous functions on [ a , b ] . The proof and lemmas are written following BrosowskiDeutsh p. 89 (through page 92). Some effort is put in avoiding the use of the axiom of choice. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweid.1 _tF
stoweid.2 tφ
stoweid.3 K=topGenran.
stoweid.4 φJComp
stoweid.5 T=J
stoweid.6 C=JCnK
stoweid.7 φAC
stoweid.8 φfAgAtTft+gtA
stoweid.9 φfAgAtTftgtA
stoweid.10 φxtTxA
stoweid.11 φrTtTrthAhrht
stoweid.12 φFC
stoweid.13 φE+
Assertion stoweid φfAtTftFt<E

Proof

Step Hyp Ref Expression
1 stoweid.1 _tF
2 stoweid.2 tφ
3 stoweid.3 K=topGenran.
4 stoweid.4 φJComp
5 stoweid.5 T=J
6 stoweid.6 C=JCnK
7 stoweid.7 φAC
8 stoweid.8 φfAgAtTft+gtA
9 stoweid.9 φfAgAtTftgtA
10 stoweid.10 φxtTxA
11 stoweid.11 φrTtTrthAhrht
12 stoweid.12 φFC
13 stoweid.13 φE+
14 simpr φT=T=
15 10 ralrimiva φxtTxA
16 1re 1
17 id x=1x=1
18 17 mpteq2dv x=1tTx=tT1
19 18 eleq1d x=1tTxAtT1A
20 19 rspccv xtTxA1tT1A
21 15 16 20 mpisyl φtT1A
22 21 adantr φT=tT1A
23 14 22 stoweidlem9 φT=fAtTftFt<ifE14E14
24 nfv fφ
25 nfv f¬T=
26 24 25 nfan fφ¬T=
27 nfv t¬T=
28 2 27 nfan tφ¬T=
29 eqid tTFtsupranF<=tTFtsupranF<
30 4 adantr φ¬T=JComp
31 7 adantr φ¬T=AC
32 8 3adant1r φ¬T=fAgAtTft+gtA
33 9 3adant1r φ¬T=fAgAtTftgtA
34 10 adantlr φ¬T=xtTxA
35 11 adantlr φ¬T=rTtTrthAhrht
36 12 adantr φ¬T=FC
37 4re 4
38 4pos 0<4
39 37 38 elrpii 4+
40 39 a1i φ4+
41 40 rpreccld φ14+
42 13 41 ifcld φifE14E14+
43 42 adantr φ¬T=ifE14E14+
44 neqne ¬T=T
45 44 adantl φ¬T=T
46 13 rpred φE
47 4ne0 40
48 37 47 rereccli 14
49 48 a1i φ14
50 46 49 ifcld φifE14E14
51 3re 3
52 3ne0 30
53 51 52 rereccli 13
54 53 a1i φ13
55 13 rpxrd φE*
56 41 rpxrd φ14*
57 xrmin2 E*14*ifE14E1414
58 55 56 57 syl2anc φifE14E1414
59 3lt4 3<4
60 3pos 0<3
61 51 37 60 38 ltrecii 3<414<13
62 59 61 mpbi 14<13
63 62 a1i φ14<13
64 50 49 54 58 63 lelttrd φifE14E14<13
65 64 adantr φ¬T=ifE14E14<13
66 1 26 28 29 3 5 30 6 31 32 33 34 35 36 43 45 65 stoweidlem62 φ¬T=fAtTftFt<ifE14E14
67 23 66 pm2.61dan φfAtTftFt<ifE14E14
68 nfv tfA
69 2 68 nfan tφfA
70 xrmin1 E*14*ifE14E14E
71 55 56 70 syl2anc φifE14E14E
72 71 ad2antrr φfAtTifE14E14E
73 7 ad2antrr φfAtTAC
74 simplr φfAtTfA
75 73 74 sseldd φfAtTfC
76 3 5 6 75 fcnre φfAtTf:T
77 simpr φfAtTtT
78 76 77 jca φfAtTf:TtT
79 ffvelrn f:TtTft
80 recn ftft
81 78 79 80 3syl φfAtTft
82 12 ad2antrr φfAtTFC
83 3 5 6 82 fcnre φfAtTF:T
84 83 77 jca φfAtTF:TtT
85 ffvelrn F:TtTFt
86 recn FtFt
87 84 85 86 3syl φfAtTFt
88 81 87 subcld φfAtTftFt
89 88 abscld φfAtTftFt
90 16 37 47 3pm3.2i 1440
91 redivcl 144014
92 90 91 mp1i φ14
93 46 92 ifcld φifE14E14
94 93 ad2antrr φfAtTifE14E14
95 46 ad2antrr φfAtTE
96 ltletr ftFtifE14E14EftFt<ifE14E14ifE14E14EftFt<E
97 89 94 95 96 syl3anc φfAtTftFt<ifE14E14ifE14E14EftFt<E
98 72 97 mpan2d φfAtTftFt<ifE14E14ftFt<E
99 69 98 ralimdaa φfAtTftFt<ifE14E14tTftFt<E
100 99 reximdva φfAtTftFt<ifE14E14fAtTftFt<E
101 67 100 mpd φfAtTftFt<E