| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweid.1 | ⊢ Ⅎ 𝑡 𝐹 | 
						
							| 2 |  | stoweid.2 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 3 |  | stoweid.3 | ⊢ 𝐾  =  ( topGen ‘ ran  (,) ) | 
						
							| 4 |  | stoweid.4 | ⊢ ( 𝜑  →  𝐽  ∈  Comp ) | 
						
							| 5 |  | stoweid.5 | ⊢ 𝑇  =  ∪  𝐽 | 
						
							| 6 |  | stoweid.6 | ⊢ 𝐶  =  ( 𝐽  Cn  𝐾 ) | 
						
							| 7 |  | stoweid.7 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐶 ) | 
						
							| 8 |  | stoweid.8 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 9 |  | stoweid.9 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 10 |  | stoweid.10 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 11 |  | stoweid.11 | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ ℎ  ∈  𝐴 ( ℎ ‘ 𝑟 )  ≠  ( ℎ ‘ 𝑡 ) ) | 
						
							| 12 |  | stoweid.12 | ⊢ ( 𝜑  →  𝐹  ∈  𝐶 ) | 
						
							| 13 |  | stoweid.13 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑇  =  ∅ )  →  𝑇  =  ∅ ) | 
						
							| 15 | 10 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 16 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 17 |  | id | ⊢ ( 𝑥  =  1  →  𝑥  =  1 ) | 
						
							| 18 | 17 | mpteq2dv | ⊢ ( 𝑥  =  1  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  =  ( 𝑡  ∈  𝑇  ↦  1 ) ) | 
						
							| 19 | 18 | eleq1d | ⊢ ( 𝑥  =  1  →  ( ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  1 )  ∈  𝐴 ) ) | 
						
							| 20 | 19 | rspccv | ⊢ ( ∀ 𝑥  ∈  ℝ ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴  →  ( 1  ∈  ℝ  →  ( 𝑡  ∈  𝑇  ↦  1 )  ∈  𝐴 ) ) | 
						
							| 21 | 15 16 20 | mpisyl | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  1 )  ∈  𝐴 ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  =  ∅ )  →  ( 𝑡  ∈  𝑇  ↦  1 )  ∈  𝐴 ) | 
						
							| 23 | 14 22 | stoweidlem9 | ⊢ ( ( 𝜑  ∧  𝑇  =  ∅ )  →  ∃ 𝑓  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) ) ) | 
						
							| 24 |  | nfv | ⊢ Ⅎ 𝑓 𝜑 | 
						
							| 25 |  | nfv | ⊢ Ⅎ 𝑓 ¬  𝑇  =  ∅ | 
						
							| 26 | 24 25 | nfan | ⊢ Ⅎ 𝑓 ( 𝜑  ∧  ¬  𝑇  =  ∅ ) | 
						
							| 27 |  | nfv | ⊢ Ⅎ 𝑡 ¬  𝑇  =  ∅ | 
						
							| 28 | 2 27 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  ¬  𝑇  =  ∅ ) | 
						
							| 29 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  −  inf ( ran  𝐹 ,  ℝ ,   <  ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  −  inf ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 30 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑇  =  ∅ )  →  𝐽  ∈  Comp ) | 
						
							| 31 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑇  =  ∅ )  →  𝐴  ⊆  𝐶 ) | 
						
							| 32 | 8 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  ¬  𝑇  =  ∅ )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 33 | 9 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  ¬  𝑇  =  ∅ )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 34 | 10 | adantlr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑇  =  ∅ )  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 35 | 11 | adantlr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑇  =  ∅ )  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ ℎ  ∈  𝐴 ( ℎ ‘ 𝑟 )  ≠  ( ℎ ‘ 𝑡 ) ) | 
						
							| 36 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑇  =  ∅ )  →  𝐹  ∈  𝐶 ) | 
						
							| 37 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 38 |  | 4pos | ⊢ 0  <  4 | 
						
							| 39 | 37 38 | elrpii | ⊢ 4  ∈  ℝ+ | 
						
							| 40 | 39 | a1i | ⊢ ( 𝜑  →  4  ∈  ℝ+ ) | 
						
							| 41 | 40 | rpreccld | ⊢ ( 𝜑  →  ( 1  /  4 )  ∈  ℝ+ ) | 
						
							| 42 | 13 41 | ifcld | ⊢ ( 𝜑  →  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) )  ∈  ℝ+ ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑇  =  ∅ )  →  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) )  ∈  ℝ+ ) | 
						
							| 44 |  | neqne | ⊢ ( ¬  𝑇  =  ∅  →  𝑇  ≠  ∅ ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝑇  =  ∅ )  →  𝑇  ≠  ∅ ) | 
						
							| 46 | 13 | rpred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 47 |  | 4ne0 | ⊢ 4  ≠  0 | 
						
							| 48 | 37 47 | rereccli | ⊢ ( 1  /  4 )  ∈  ℝ | 
						
							| 49 | 48 | a1i | ⊢ ( 𝜑  →  ( 1  /  4 )  ∈  ℝ ) | 
						
							| 50 | 46 49 | ifcld | ⊢ ( 𝜑  →  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) )  ∈  ℝ ) | 
						
							| 51 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 52 |  | 3ne0 | ⊢ 3  ≠  0 | 
						
							| 53 | 51 52 | rereccli | ⊢ ( 1  /  3 )  ∈  ℝ | 
						
							| 54 | 53 | a1i | ⊢ ( 𝜑  →  ( 1  /  3 )  ∈  ℝ ) | 
						
							| 55 | 13 | rpxrd | ⊢ ( 𝜑  →  𝐸  ∈  ℝ* ) | 
						
							| 56 | 41 | rpxrd | ⊢ ( 𝜑  →  ( 1  /  4 )  ∈  ℝ* ) | 
						
							| 57 |  | xrmin2 | ⊢ ( ( 𝐸  ∈  ℝ*  ∧  ( 1  /  4 )  ∈  ℝ* )  →  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) )  ≤  ( 1  /  4 ) ) | 
						
							| 58 | 55 56 57 | syl2anc | ⊢ ( 𝜑  →  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) )  ≤  ( 1  /  4 ) ) | 
						
							| 59 |  | 3lt4 | ⊢ 3  <  4 | 
						
							| 60 |  | 3pos | ⊢ 0  <  3 | 
						
							| 61 | 51 37 60 38 | ltrecii | ⊢ ( 3  <  4  ↔  ( 1  /  4 )  <  ( 1  /  3 ) ) | 
						
							| 62 | 59 61 | mpbi | ⊢ ( 1  /  4 )  <  ( 1  /  3 ) | 
						
							| 63 | 62 | a1i | ⊢ ( 𝜑  →  ( 1  /  4 )  <  ( 1  /  3 ) ) | 
						
							| 64 | 50 49 54 58 63 | lelttrd | ⊢ ( 𝜑  →  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) )  <  ( 1  /  3 ) ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑇  =  ∅ )  →  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) )  <  ( 1  /  3 ) ) | 
						
							| 66 | 1 26 28 29 3 5 30 6 31 32 33 34 35 36 43 45 65 | stoweidlem62 | ⊢ ( ( 𝜑  ∧  ¬  𝑇  =  ∅ )  →  ∃ 𝑓  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) ) ) | 
						
							| 67 | 23 66 | pm2.61dan | ⊢ ( 𝜑  →  ∃ 𝑓  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) ) ) | 
						
							| 68 |  | nfv | ⊢ Ⅎ 𝑡 𝑓  ∈  𝐴 | 
						
							| 69 | 2 68 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑓  ∈  𝐴 ) | 
						
							| 70 |  | xrmin1 | ⊢ ( ( 𝐸  ∈  ℝ*  ∧  ( 1  /  4 )  ∈  ℝ* )  →  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) )  ≤  𝐸 ) | 
						
							| 71 | 55 56 70 | syl2anc | ⊢ ( 𝜑  →  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) )  ≤  𝐸 ) | 
						
							| 72 | 71 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) )  ≤  𝐸 ) | 
						
							| 73 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  𝐴  ⊆  𝐶 ) | 
						
							| 74 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  𝑓  ∈  𝐴 ) | 
						
							| 75 | 73 74 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  𝑓  ∈  𝐶 ) | 
						
							| 76 | 3 5 6 75 | fcnre | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 77 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  𝑇 ) | 
						
							| 78 | 76 77 | jca | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝑓 : 𝑇 ⟶ ℝ  ∧  𝑡  ∈  𝑇 ) ) | 
						
							| 79 |  | ffvelcdm | ⊢ ( ( 𝑓 : 𝑇 ⟶ ℝ  ∧  𝑡  ∈  𝑇 )  →  ( 𝑓 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 80 |  | recn | ⊢ ( ( 𝑓 ‘ 𝑡 )  ∈  ℝ  →  ( 𝑓 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 81 | 78 79 80 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝑓 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 82 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  𝐹  ∈  𝐶 ) | 
						
							| 83 | 3 5 6 82 | fcnre | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  𝐹 : 𝑇 ⟶ ℝ ) | 
						
							| 84 | 83 77 | jca | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 : 𝑇 ⟶ ℝ  ∧  𝑡  ∈  𝑇 ) ) | 
						
							| 85 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝑇 ⟶ ℝ  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 86 |  | recn | ⊢ ( ( 𝐹 ‘ 𝑡 )  ∈  ℝ  →  ( 𝐹 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 87 | 84 85 86 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 88 | 81 87 | subcld | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) )  ∈  ℂ ) | 
						
							| 89 | 88 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  ∈  ℝ ) | 
						
							| 90 | 16 37 47 | 3pm3.2i | ⊢ ( 1  ∈  ℝ  ∧  4  ∈  ℝ  ∧  4  ≠  0 ) | 
						
							| 91 |  | redivcl | ⊢ ( ( 1  ∈  ℝ  ∧  4  ∈  ℝ  ∧  4  ≠  0 )  →  ( 1  /  4 )  ∈  ℝ ) | 
						
							| 92 | 90 91 | mp1i | ⊢ ( 𝜑  →  ( 1  /  4 )  ∈  ℝ ) | 
						
							| 93 | 46 92 | ifcld | ⊢ ( 𝜑  →  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) )  ∈  ℝ ) | 
						
							| 94 | 93 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) )  ∈  ℝ ) | 
						
							| 95 | 46 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  𝐸  ∈  ℝ ) | 
						
							| 96 |  | ltletr | ⊢ ( ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  ∈  ℝ  ∧  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) )  ∈  ℝ  ∧  𝐸  ∈  ℝ )  →  ( ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) )  ∧  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) )  ≤  𝐸 )  →  ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) ) | 
						
							| 97 | 89 94 95 96 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) )  ∧  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) )  ≤  𝐸 )  →  ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) ) | 
						
							| 98 | 72 97 | mpan2d | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) )  →  ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) ) | 
						
							| 99 | 69 98 | ralimdaa | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  ( ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) )  →  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) ) | 
						
							| 100 | 99 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑓  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  if ( 𝐸  ≤  ( 1  /  4 ) ,  𝐸 ,  ( 1  /  4 ) )  →  ∃ 𝑓  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) ) | 
						
							| 101 | 67 100 | mpd | ⊢ ( 𝜑  →  ∃ 𝑓  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) |