| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweid.1 |
|- F/_ t F |
| 2 |
|
stoweid.2 |
|- F/ t ph |
| 3 |
|
stoweid.3 |
|- K = ( topGen ` ran (,) ) |
| 4 |
|
stoweid.4 |
|- ( ph -> J e. Comp ) |
| 5 |
|
stoweid.5 |
|- T = U. J |
| 6 |
|
stoweid.6 |
|- C = ( J Cn K ) |
| 7 |
|
stoweid.7 |
|- ( ph -> A C_ C ) |
| 8 |
|
stoweid.8 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
| 9 |
|
stoweid.9 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) |
| 10 |
|
stoweid.10 |
|- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
| 11 |
|
stoweid.11 |
|- ( ( ph /\ ( r e. T /\ t e. T /\ r =/= t ) ) -> E. h e. A ( h ` r ) =/= ( h ` t ) ) |
| 12 |
|
stoweid.12 |
|- ( ph -> F e. C ) |
| 13 |
|
stoweid.13 |
|- ( ph -> E e. RR+ ) |
| 14 |
|
simpr |
|- ( ( ph /\ T = (/) ) -> T = (/) ) |
| 15 |
10
|
ralrimiva |
|- ( ph -> A. x e. RR ( t e. T |-> x ) e. A ) |
| 16 |
|
1re |
|- 1 e. RR |
| 17 |
|
id |
|- ( x = 1 -> x = 1 ) |
| 18 |
17
|
mpteq2dv |
|- ( x = 1 -> ( t e. T |-> x ) = ( t e. T |-> 1 ) ) |
| 19 |
18
|
eleq1d |
|- ( x = 1 -> ( ( t e. T |-> x ) e. A <-> ( t e. T |-> 1 ) e. A ) ) |
| 20 |
19
|
rspccv |
|- ( A. x e. RR ( t e. T |-> x ) e. A -> ( 1 e. RR -> ( t e. T |-> 1 ) e. A ) ) |
| 21 |
15 16 20
|
mpisyl |
|- ( ph -> ( t e. T |-> 1 ) e. A ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ T = (/) ) -> ( t e. T |-> 1 ) e. A ) |
| 23 |
14 22
|
stoweidlem9 |
|- ( ( ph /\ T = (/) ) -> E. f e. A A. t e. T ( abs ` ( ( f ` t ) - ( F ` t ) ) ) < if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) ) |
| 24 |
|
nfv |
|- F/ f ph |
| 25 |
|
nfv |
|- F/ f -. T = (/) |
| 26 |
24 25
|
nfan |
|- F/ f ( ph /\ -. T = (/) ) |
| 27 |
|
nfv |
|- F/ t -. T = (/) |
| 28 |
2 27
|
nfan |
|- F/ t ( ph /\ -. T = (/) ) |
| 29 |
|
eqid |
|- ( t e. T |-> ( ( F ` t ) - inf ( ran F , RR , < ) ) ) = ( t e. T |-> ( ( F ` t ) - inf ( ran F , RR , < ) ) ) |
| 30 |
4
|
adantr |
|- ( ( ph /\ -. T = (/) ) -> J e. Comp ) |
| 31 |
7
|
adantr |
|- ( ( ph /\ -. T = (/) ) -> A C_ C ) |
| 32 |
8
|
3adant1r |
|- ( ( ( ph /\ -. T = (/) ) /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
| 33 |
9
|
3adant1r |
|- ( ( ( ph /\ -. T = (/) ) /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) |
| 34 |
10
|
adantlr |
|- ( ( ( ph /\ -. T = (/) ) /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
| 35 |
11
|
adantlr |
|- ( ( ( ph /\ -. T = (/) ) /\ ( r e. T /\ t e. T /\ r =/= t ) ) -> E. h e. A ( h ` r ) =/= ( h ` t ) ) |
| 36 |
12
|
adantr |
|- ( ( ph /\ -. T = (/) ) -> F e. C ) |
| 37 |
|
4re |
|- 4 e. RR |
| 38 |
|
4pos |
|- 0 < 4 |
| 39 |
37 38
|
elrpii |
|- 4 e. RR+ |
| 40 |
39
|
a1i |
|- ( ph -> 4 e. RR+ ) |
| 41 |
40
|
rpreccld |
|- ( ph -> ( 1 / 4 ) e. RR+ ) |
| 42 |
13 41
|
ifcld |
|- ( ph -> if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) e. RR+ ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ -. T = (/) ) -> if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) e. RR+ ) |
| 44 |
|
neqne |
|- ( -. T = (/) -> T =/= (/) ) |
| 45 |
44
|
adantl |
|- ( ( ph /\ -. T = (/) ) -> T =/= (/) ) |
| 46 |
13
|
rpred |
|- ( ph -> E e. RR ) |
| 47 |
|
4ne0 |
|- 4 =/= 0 |
| 48 |
37 47
|
rereccli |
|- ( 1 / 4 ) e. RR |
| 49 |
48
|
a1i |
|- ( ph -> ( 1 / 4 ) e. RR ) |
| 50 |
46 49
|
ifcld |
|- ( ph -> if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) e. RR ) |
| 51 |
|
3re |
|- 3 e. RR |
| 52 |
|
3ne0 |
|- 3 =/= 0 |
| 53 |
51 52
|
rereccli |
|- ( 1 / 3 ) e. RR |
| 54 |
53
|
a1i |
|- ( ph -> ( 1 / 3 ) e. RR ) |
| 55 |
13
|
rpxrd |
|- ( ph -> E e. RR* ) |
| 56 |
41
|
rpxrd |
|- ( ph -> ( 1 / 4 ) e. RR* ) |
| 57 |
|
xrmin2 |
|- ( ( E e. RR* /\ ( 1 / 4 ) e. RR* ) -> if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) <_ ( 1 / 4 ) ) |
| 58 |
55 56 57
|
syl2anc |
|- ( ph -> if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) <_ ( 1 / 4 ) ) |
| 59 |
|
3lt4 |
|- 3 < 4 |
| 60 |
|
3pos |
|- 0 < 3 |
| 61 |
51 37 60 38
|
ltrecii |
|- ( 3 < 4 <-> ( 1 / 4 ) < ( 1 / 3 ) ) |
| 62 |
59 61
|
mpbi |
|- ( 1 / 4 ) < ( 1 / 3 ) |
| 63 |
62
|
a1i |
|- ( ph -> ( 1 / 4 ) < ( 1 / 3 ) ) |
| 64 |
50 49 54 58 63
|
lelttrd |
|- ( ph -> if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) < ( 1 / 3 ) ) |
| 65 |
64
|
adantr |
|- ( ( ph /\ -. T = (/) ) -> if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) < ( 1 / 3 ) ) |
| 66 |
1 26 28 29 3 5 30 6 31 32 33 34 35 36 43 45 65
|
stoweidlem62 |
|- ( ( ph /\ -. T = (/) ) -> E. f e. A A. t e. T ( abs ` ( ( f ` t ) - ( F ` t ) ) ) < if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) ) |
| 67 |
23 66
|
pm2.61dan |
|- ( ph -> E. f e. A A. t e. T ( abs ` ( ( f ` t ) - ( F ` t ) ) ) < if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) ) |
| 68 |
|
nfv |
|- F/ t f e. A |
| 69 |
2 68
|
nfan |
|- F/ t ( ph /\ f e. A ) |
| 70 |
|
xrmin1 |
|- ( ( E e. RR* /\ ( 1 / 4 ) e. RR* ) -> if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) <_ E ) |
| 71 |
55 56 70
|
syl2anc |
|- ( ph -> if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) <_ E ) |
| 72 |
71
|
ad2antrr |
|- ( ( ( ph /\ f e. A ) /\ t e. T ) -> if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) <_ E ) |
| 73 |
7
|
ad2antrr |
|- ( ( ( ph /\ f e. A ) /\ t e. T ) -> A C_ C ) |
| 74 |
|
simplr |
|- ( ( ( ph /\ f e. A ) /\ t e. T ) -> f e. A ) |
| 75 |
73 74
|
sseldd |
|- ( ( ( ph /\ f e. A ) /\ t e. T ) -> f e. C ) |
| 76 |
3 5 6 75
|
fcnre |
|- ( ( ( ph /\ f e. A ) /\ t e. T ) -> f : T --> RR ) |
| 77 |
|
simpr |
|- ( ( ( ph /\ f e. A ) /\ t e. T ) -> t e. T ) |
| 78 |
76 77
|
jca |
|- ( ( ( ph /\ f e. A ) /\ t e. T ) -> ( f : T --> RR /\ t e. T ) ) |
| 79 |
|
ffvelcdm |
|- ( ( f : T --> RR /\ t e. T ) -> ( f ` t ) e. RR ) |
| 80 |
|
recn |
|- ( ( f ` t ) e. RR -> ( f ` t ) e. CC ) |
| 81 |
78 79 80
|
3syl |
|- ( ( ( ph /\ f e. A ) /\ t e. T ) -> ( f ` t ) e. CC ) |
| 82 |
12
|
ad2antrr |
|- ( ( ( ph /\ f e. A ) /\ t e. T ) -> F e. C ) |
| 83 |
3 5 6 82
|
fcnre |
|- ( ( ( ph /\ f e. A ) /\ t e. T ) -> F : T --> RR ) |
| 84 |
83 77
|
jca |
|- ( ( ( ph /\ f e. A ) /\ t e. T ) -> ( F : T --> RR /\ t e. T ) ) |
| 85 |
|
ffvelcdm |
|- ( ( F : T --> RR /\ t e. T ) -> ( F ` t ) e. RR ) |
| 86 |
|
recn |
|- ( ( F ` t ) e. RR -> ( F ` t ) e. CC ) |
| 87 |
84 85 86
|
3syl |
|- ( ( ( ph /\ f e. A ) /\ t e. T ) -> ( F ` t ) e. CC ) |
| 88 |
81 87
|
subcld |
|- ( ( ( ph /\ f e. A ) /\ t e. T ) -> ( ( f ` t ) - ( F ` t ) ) e. CC ) |
| 89 |
88
|
abscld |
|- ( ( ( ph /\ f e. A ) /\ t e. T ) -> ( abs ` ( ( f ` t ) - ( F ` t ) ) ) e. RR ) |
| 90 |
16 37 47
|
3pm3.2i |
|- ( 1 e. RR /\ 4 e. RR /\ 4 =/= 0 ) |
| 91 |
|
redivcl |
|- ( ( 1 e. RR /\ 4 e. RR /\ 4 =/= 0 ) -> ( 1 / 4 ) e. RR ) |
| 92 |
90 91
|
mp1i |
|- ( ph -> ( 1 / 4 ) e. RR ) |
| 93 |
46 92
|
ifcld |
|- ( ph -> if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) e. RR ) |
| 94 |
93
|
ad2antrr |
|- ( ( ( ph /\ f e. A ) /\ t e. T ) -> if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) e. RR ) |
| 95 |
46
|
ad2antrr |
|- ( ( ( ph /\ f e. A ) /\ t e. T ) -> E e. RR ) |
| 96 |
|
ltletr |
|- ( ( ( abs ` ( ( f ` t ) - ( F ` t ) ) ) e. RR /\ if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) e. RR /\ E e. RR ) -> ( ( ( abs ` ( ( f ` t ) - ( F ` t ) ) ) < if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) /\ if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) <_ E ) -> ( abs ` ( ( f ` t ) - ( F ` t ) ) ) < E ) ) |
| 97 |
89 94 95 96
|
syl3anc |
|- ( ( ( ph /\ f e. A ) /\ t e. T ) -> ( ( ( abs ` ( ( f ` t ) - ( F ` t ) ) ) < if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) /\ if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) <_ E ) -> ( abs ` ( ( f ` t ) - ( F ` t ) ) ) < E ) ) |
| 98 |
72 97
|
mpan2d |
|- ( ( ( ph /\ f e. A ) /\ t e. T ) -> ( ( abs ` ( ( f ` t ) - ( F ` t ) ) ) < if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) -> ( abs ` ( ( f ` t ) - ( F ` t ) ) ) < E ) ) |
| 99 |
69 98
|
ralimdaa |
|- ( ( ph /\ f e. A ) -> ( A. t e. T ( abs ` ( ( f ` t ) - ( F ` t ) ) ) < if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) -> A. t e. T ( abs ` ( ( f ` t ) - ( F ` t ) ) ) < E ) ) |
| 100 |
99
|
reximdva |
|- ( ph -> ( E. f e. A A. t e. T ( abs ` ( ( f ` t ) - ( F ` t ) ) ) < if ( E <_ ( 1 / 4 ) , E , ( 1 / 4 ) ) -> E. f e. A A. t e. T ( abs ` ( ( f ` t ) - ( F ` t ) ) ) < E ) ) |
| 101 |
67 100
|
mpd |
|- ( ph -> E. f e. A A. t e. T ( abs ` ( ( f ` t ) - ( F ` t ) ) ) < E ) |