| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem62.1 |
|- F/_ t F |
| 2 |
|
stoweidlem62.2 |
|- F/ f ph |
| 3 |
|
stoweidlem62.3 |
|- F/ t ph |
| 4 |
|
stoweidlem62.4 |
|- H = ( t e. T |-> ( ( F ` t ) - inf ( ran F , RR , < ) ) ) |
| 5 |
|
stoweidlem62.5 |
|- K = ( topGen ` ran (,) ) |
| 6 |
|
stoweidlem62.6 |
|- T = U. J |
| 7 |
|
stoweidlem62.7 |
|- ( ph -> J e. Comp ) |
| 8 |
|
stoweidlem62.8 |
|- C = ( J Cn K ) |
| 9 |
|
stoweidlem62.9 |
|- ( ph -> A C_ C ) |
| 10 |
|
stoweidlem62.10 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
| 11 |
|
stoweidlem62.11 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) |
| 12 |
|
stoweidlem62.12 |
|- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
| 13 |
|
stoweidlem62.13 |
|- ( ( ph /\ ( r e. T /\ t e. T /\ r =/= t ) ) -> E. q e. A ( q ` r ) =/= ( q ` t ) ) |
| 14 |
|
stoweidlem62.14 |
|- ( ph -> F e. C ) |
| 15 |
|
stoweidlem62.15 |
|- ( ph -> E e. RR+ ) |
| 16 |
|
stoweidlem62.16 |
|- ( ph -> T =/= (/) ) |
| 17 |
|
stoweidlem62.17 |
|- ( ph -> E < ( 1 / 3 ) ) |
| 18 |
|
nfmpt1 |
|- F/_ t ( t e. T |-> ( ( F ` t ) - inf ( ran F , RR , < ) ) ) |
| 19 |
4 18
|
nfcxfr |
|- F/_ t H |
| 20 |
|
eleq1w |
|- ( g = h -> ( g e. A <-> h e. A ) ) |
| 21 |
20
|
3anbi3d |
|- ( g = h -> ( ( ph /\ f e. A /\ g e. A ) <-> ( ph /\ f e. A /\ h e. A ) ) ) |
| 22 |
|
fveq1 |
|- ( g = h -> ( g ` t ) = ( h ` t ) ) |
| 23 |
22
|
oveq2d |
|- ( g = h -> ( ( f ` t ) + ( g ` t ) ) = ( ( f ` t ) + ( h ` t ) ) ) |
| 24 |
23
|
mpteq2dv |
|- ( g = h -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) = ( t e. T |-> ( ( f ` t ) + ( h ` t ) ) ) ) |
| 25 |
24
|
eleq1d |
|- ( g = h -> ( ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A <-> ( t e. T |-> ( ( f ` t ) + ( h ` t ) ) ) e. A ) ) |
| 26 |
21 25
|
imbi12d |
|- ( g = h -> ( ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) <-> ( ( ph /\ f e. A /\ h e. A ) -> ( t e. T |-> ( ( f ` t ) + ( h ` t ) ) ) e. A ) ) ) |
| 27 |
26 10
|
chvarvv |
|- ( ( ph /\ f e. A /\ h e. A ) -> ( t e. T |-> ( ( f ` t ) + ( h ` t ) ) ) e. A ) |
| 28 |
22
|
oveq2d |
|- ( g = h -> ( ( f ` t ) x. ( g ` t ) ) = ( ( f ` t ) x. ( h ` t ) ) ) |
| 29 |
28
|
mpteq2dv |
|- ( g = h -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) = ( t e. T |-> ( ( f ` t ) x. ( h ` t ) ) ) ) |
| 30 |
29
|
eleq1d |
|- ( g = h -> ( ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A <-> ( t e. T |-> ( ( f ` t ) x. ( h ` t ) ) ) e. A ) ) |
| 31 |
21 30
|
imbi12d |
|- ( g = h -> ( ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) <-> ( ( ph /\ f e. A /\ h e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( h ` t ) ) ) e. A ) ) ) |
| 32 |
31 11
|
chvarvv |
|- ( ( ph /\ f e. A /\ h e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( h ` t ) ) ) e. A ) |
| 33 |
1
|
nfrn |
|- F/_ t ran F |
| 34 |
|
nfcv |
|- F/_ t RR |
| 35 |
|
nfcv |
|- F/_ t < |
| 36 |
33 34 35
|
nfinf |
|- F/_ t inf ( ran F , RR , < ) |
| 37 |
|
eqid |
|- ( T X. { -u inf ( ran F , RR , < ) } ) = ( T X. { -u inf ( ran F , RR , < ) } ) |
| 38 |
|
cmptop |
|- ( J e. Comp -> J e. Top ) |
| 39 |
7 38
|
syl |
|- ( ph -> J e. Top ) |
| 40 |
14 8
|
eleqtrdi |
|- ( ph -> F e. ( J Cn K ) ) |
| 41 |
1 3 6 5 7 40 16
|
stoweidlem29 |
|- ( ph -> ( inf ( ran F , RR , < ) e. ran F /\ inf ( ran F , RR , < ) e. RR /\ A. t e. T inf ( ran F , RR , < ) <_ ( F ` t ) ) ) |
| 42 |
41
|
simp2d |
|- ( ph -> inf ( ran F , RR , < ) e. RR ) |
| 43 |
1 36 3 6 37 5 39 8 14 42
|
stoweidlem47 |
|- ( ph -> ( t e. T |-> ( ( F ` t ) - inf ( ran F , RR , < ) ) ) e. C ) |
| 44 |
4 43
|
eqeltrid |
|- ( ph -> H e. C ) |
| 45 |
41
|
simp3d |
|- ( ph -> A. t e. T inf ( ran F , RR , < ) <_ ( F ` t ) ) |
| 46 |
45
|
r19.21bi |
|- ( ( ph /\ t e. T ) -> inf ( ran F , RR , < ) <_ ( F ` t ) ) |
| 47 |
5 6 8 14
|
fcnre |
|- ( ph -> F : T --> RR ) |
| 48 |
47
|
ffvelcdmda |
|- ( ( ph /\ t e. T ) -> ( F ` t ) e. RR ) |
| 49 |
42
|
adantr |
|- ( ( ph /\ t e. T ) -> inf ( ran F , RR , < ) e. RR ) |
| 50 |
48 49
|
subge0d |
|- ( ( ph /\ t e. T ) -> ( 0 <_ ( ( F ` t ) - inf ( ran F , RR , < ) ) <-> inf ( ran F , RR , < ) <_ ( F ` t ) ) ) |
| 51 |
46 50
|
mpbird |
|- ( ( ph /\ t e. T ) -> 0 <_ ( ( F ` t ) - inf ( ran F , RR , < ) ) ) |
| 52 |
|
simpr |
|- ( ( ph /\ t e. T ) -> t e. T ) |
| 53 |
48 49
|
resubcld |
|- ( ( ph /\ t e. T ) -> ( ( F ` t ) - inf ( ran F , RR , < ) ) e. RR ) |
| 54 |
4
|
fvmpt2 |
|- ( ( t e. T /\ ( ( F ` t ) - inf ( ran F , RR , < ) ) e. RR ) -> ( H ` t ) = ( ( F ` t ) - inf ( ran F , RR , < ) ) ) |
| 55 |
52 53 54
|
syl2anc |
|- ( ( ph /\ t e. T ) -> ( H ` t ) = ( ( F ` t ) - inf ( ran F , RR , < ) ) ) |
| 56 |
51 55
|
breqtrrd |
|- ( ( ph /\ t e. T ) -> 0 <_ ( H ` t ) ) |
| 57 |
56
|
ex |
|- ( ph -> ( t e. T -> 0 <_ ( H ` t ) ) ) |
| 58 |
3 57
|
ralrimi |
|- ( ph -> A. t e. T 0 <_ ( H ` t ) ) |
| 59 |
15
|
rphalfcld |
|- ( ph -> ( E / 2 ) e. RR+ ) |
| 60 |
15
|
rpred |
|- ( ph -> E e. RR ) |
| 61 |
60
|
rehalfcld |
|- ( ph -> ( E / 2 ) e. RR ) |
| 62 |
|
3re |
|- 3 e. RR |
| 63 |
|
3ne0 |
|- 3 =/= 0 |
| 64 |
62 63
|
rereccli |
|- ( 1 / 3 ) e. RR |
| 65 |
64
|
a1i |
|- ( ph -> ( 1 / 3 ) e. RR ) |
| 66 |
|
rphalflt |
|- ( E e. RR+ -> ( E / 2 ) < E ) |
| 67 |
15 66
|
syl |
|- ( ph -> ( E / 2 ) < E ) |
| 68 |
61 60 65 67 17
|
lttrd |
|- ( ph -> ( E / 2 ) < ( 1 / 3 ) ) |
| 69 |
19 3 5 7 6 16 8 9 27 32 12 13 44 58 59 68
|
stoweidlem61 |
|- ( ph -> E. h e. A A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < ( 2 x. ( E / 2 ) ) ) |
| 70 |
|
nfra1 |
|- F/ t A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < ( 2 x. ( E / 2 ) ) |
| 71 |
3 70
|
nfan |
|- F/ t ( ph /\ A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < ( 2 x. ( E / 2 ) ) ) |
| 72 |
|
rsp |
|- ( A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < ( 2 x. ( E / 2 ) ) -> ( t e. T -> ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < ( 2 x. ( E / 2 ) ) ) ) |
| 73 |
15
|
rpcnd |
|- ( ph -> E e. CC ) |
| 74 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 75 |
|
2ne0 |
|- 2 =/= 0 |
| 76 |
75
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 77 |
73 74 76
|
divcan2d |
|- ( ph -> ( 2 x. ( E / 2 ) ) = E ) |
| 78 |
77
|
breq2d |
|- ( ph -> ( ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < ( 2 x. ( E / 2 ) ) <-> ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) ) |
| 79 |
78
|
biimpd |
|- ( ph -> ( ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < ( 2 x. ( E / 2 ) ) -> ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) ) |
| 80 |
72 79
|
sylan9r |
|- ( ( ph /\ A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < ( 2 x. ( E / 2 ) ) ) -> ( t e. T -> ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) ) |
| 81 |
71 80
|
ralrimi |
|- ( ( ph /\ A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < ( 2 x. ( E / 2 ) ) ) -> A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) |
| 82 |
81
|
ex |
|- ( ph -> ( A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < ( 2 x. ( E / 2 ) ) -> A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) ) |
| 83 |
82
|
reximdv |
|- ( ph -> ( E. h e. A A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < ( 2 x. ( E / 2 ) ) -> E. h e. A A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) ) |
| 84 |
69 83
|
mpd |
|- ( ph -> E. h e. A A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) |
| 85 |
|
nfmpt1 |
|- F/_ t ( t e. T |-> ( ( h ` t ) + inf ( ran F , RR , < ) ) ) |
| 86 |
|
nfcv |
|- F/_ t h |
| 87 |
|
nfv |
|- F/ t h e. A |
| 88 |
|
nfra1 |
|- F/ t A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E |
| 89 |
87 88
|
nfan |
|- F/ t ( h e. A /\ A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) |
| 90 |
3 89
|
nfan |
|- F/ t ( ph /\ ( h e. A /\ A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) ) |
| 91 |
|
eqid |
|- ( t e. T |-> ( ( h ` t ) + inf ( ran F , RR , < ) ) ) = ( t e. T |-> ( ( h ` t ) + inf ( ran F , RR , < ) ) ) |
| 92 |
47
|
adantr |
|- ( ( ph /\ ( h e. A /\ A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) ) -> F : T --> RR ) |
| 93 |
42
|
adantr |
|- ( ( ph /\ ( h e. A /\ A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) ) -> inf ( ran F , RR , < ) e. RR ) |
| 94 |
10
|
3adant1r |
|- ( ( ( ph /\ ( h e. A /\ A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) ) /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
| 95 |
12
|
adantlr |
|- ( ( ( ph /\ ( h e. A /\ A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) ) /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
| 96 |
9
|
sseld |
|- ( ph -> ( f e. A -> f e. C ) ) |
| 97 |
8
|
eleq2i |
|- ( f e. C <-> f e. ( J Cn K ) ) |
| 98 |
96 97
|
imbitrdi |
|- ( ph -> ( f e. A -> f e. ( J Cn K ) ) ) |
| 99 |
|
eqid |
|- U. J = U. J |
| 100 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 101 |
5
|
unieqi |
|- U. K = U. ( topGen ` ran (,) ) |
| 102 |
100 101
|
eqtr4i |
|- RR = U. K |
| 103 |
99 102
|
cnf |
|- ( f e. ( J Cn K ) -> f : U. J --> RR ) |
| 104 |
98 103
|
syl6 |
|- ( ph -> ( f e. A -> f : U. J --> RR ) ) |
| 105 |
|
feq2 |
|- ( T = U. J -> ( f : T --> RR <-> f : U. J --> RR ) ) |
| 106 |
6 105
|
mp1i |
|- ( ph -> ( f : T --> RR <-> f : U. J --> RR ) ) |
| 107 |
104 106
|
sylibrd |
|- ( ph -> ( f e. A -> f : T --> RR ) ) |
| 108 |
2 107
|
ralrimi |
|- ( ph -> A. f e. A f : T --> RR ) |
| 109 |
108
|
adantr |
|- ( ( ph /\ ( h e. A /\ A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) ) -> A. f e. A f : T --> RR ) |
| 110 |
|
simprl |
|- ( ( ph /\ ( h e. A /\ A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) ) -> h e. A ) |
| 111 |
55
|
eqcomd |
|- ( ( ph /\ t e. T ) -> ( ( F ` t ) - inf ( ran F , RR , < ) ) = ( H ` t ) ) |
| 112 |
111
|
oveq2d |
|- ( ( ph /\ t e. T ) -> ( ( h ` t ) - ( ( F ` t ) - inf ( ran F , RR , < ) ) ) = ( ( h ` t ) - ( H ` t ) ) ) |
| 113 |
112
|
fveq2d |
|- ( ( ph /\ t e. T ) -> ( abs ` ( ( h ` t ) - ( ( F ` t ) - inf ( ran F , RR , < ) ) ) ) = ( abs ` ( ( h ` t ) - ( H ` t ) ) ) ) |
| 114 |
113
|
adantlr |
|- ( ( ( ph /\ ( h e. A /\ A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) ) /\ t e. T ) -> ( abs ` ( ( h ` t ) - ( ( F ` t ) - inf ( ran F , RR , < ) ) ) ) = ( abs ` ( ( h ` t ) - ( H ` t ) ) ) ) |
| 115 |
|
simplrr |
|- ( ( ( ph /\ ( h e. A /\ A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) ) /\ t e. T ) -> A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) |
| 116 |
|
rspa |
|- ( ( A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E /\ t e. T ) -> ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) |
| 117 |
115 116
|
sylancom |
|- ( ( ( ph /\ ( h e. A /\ A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) ) /\ t e. T ) -> ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) |
| 118 |
114 117
|
eqbrtrd |
|- ( ( ( ph /\ ( h e. A /\ A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) ) /\ t e. T ) -> ( abs ` ( ( h ` t ) - ( ( F ` t ) - inf ( ran F , RR , < ) ) ) ) < E ) |
| 119 |
118
|
ex |
|- ( ( ph /\ ( h e. A /\ A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) ) -> ( t e. T -> ( abs ` ( ( h ` t ) - ( ( F ` t ) - inf ( ran F , RR , < ) ) ) ) < E ) ) |
| 120 |
90 119
|
ralrimi |
|- ( ( ph /\ ( h e. A /\ A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) ) -> A. t e. T ( abs ` ( ( h ` t ) - ( ( F ` t ) - inf ( ran F , RR , < ) ) ) ) < E ) |
| 121 |
85 86 36 90 91 92 93 94 95 109 110 120
|
stoweidlem21 |
|- ( ( ph /\ ( h e. A /\ A. t e. T ( abs ` ( ( h ` t ) - ( H ` t ) ) ) < E ) ) -> E. f e. A A. t e. T ( abs ` ( ( f ` t ) - ( F ` t ) ) ) < E ) |
| 122 |
84 121
|
rexlimddv |
|- ( ph -> E. f e. A A. t e. T ( abs ` ( ( f ` t ) - ( F ` t ) ) ) < E ) |