| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem21.1 |
|- F/_ t G |
| 2 |
|
stoweidlem21.2 |
|- F/_ t H |
| 3 |
|
stoweidlem21.3 |
|- F/_ t S |
| 4 |
|
stoweidlem21.4 |
|- F/ t ph |
| 5 |
|
stoweidlem21.5 |
|- G = ( t e. T |-> ( ( H ` t ) + S ) ) |
| 6 |
|
stoweidlem21.6 |
|- ( ph -> F : T --> RR ) |
| 7 |
|
stoweidlem21.7 |
|- ( ph -> S e. RR ) |
| 8 |
|
stoweidlem21.8 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
| 9 |
|
stoweidlem21.9 |
|- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
| 10 |
|
stoweidlem21.10 |
|- ( ph -> A. f e. A f : T --> RR ) |
| 11 |
|
stoweidlem21.11 |
|- ( ph -> H e. A ) |
| 12 |
|
stoweidlem21.12 |
|- ( ph -> A. t e. T ( abs ` ( ( H ` t ) - ( ( F ` t ) - S ) ) ) < E ) |
| 13 |
|
fvconst2g |
|- ( ( S e. RR /\ t e. T ) -> ( ( T X. { S } ) ` t ) = S ) |
| 14 |
7 13
|
sylan |
|- ( ( ph /\ t e. T ) -> ( ( T X. { S } ) ` t ) = S ) |
| 15 |
14
|
eqcomd |
|- ( ( ph /\ t e. T ) -> S = ( ( T X. { S } ) ` t ) ) |
| 16 |
15
|
oveq2d |
|- ( ( ph /\ t e. T ) -> ( ( H ` t ) + S ) = ( ( H ` t ) + ( ( T X. { S } ) ` t ) ) ) |
| 17 |
4 16
|
mpteq2da |
|- ( ph -> ( t e. T |-> ( ( H ` t ) + S ) ) = ( t e. T |-> ( ( H ` t ) + ( ( T X. { S } ) ` t ) ) ) ) |
| 18 |
5 17
|
eqtrid |
|- ( ph -> G = ( t e. T |-> ( ( H ` t ) + ( ( T X. { S } ) ` t ) ) ) ) |
| 19 |
|
fconstmpt |
|- ( T X. { S } ) = ( s e. T |-> S ) |
| 20 |
|
nfcv |
|- F/_ s S |
| 21 |
|
eqidd |
|- ( s = t -> S = S ) |
| 22 |
3 20 21
|
cbvmpt |
|- ( s e. T |-> S ) = ( t e. T |-> S ) |
| 23 |
19 22
|
eqtri |
|- ( T X. { S } ) = ( t e. T |-> S ) |
| 24 |
3
|
nfeq2 |
|- F/ t x = S |
| 25 |
|
simpl |
|- ( ( x = S /\ t e. T ) -> x = S ) |
| 26 |
24 25
|
mpteq2da |
|- ( x = S -> ( t e. T |-> x ) = ( t e. T |-> S ) ) |
| 27 |
26
|
eleq1d |
|- ( x = S -> ( ( t e. T |-> x ) e. A <-> ( t e. T |-> S ) e. A ) ) |
| 28 |
27
|
imbi2d |
|- ( x = S -> ( ( ph -> ( t e. T |-> x ) e. A ) <-> ( ph -> ( t e. T |-> S ) e. A ) ) ) |
| 29 |
9
|
expcom |
|- ( x e. RR -> ( ph -> ( t e. T |-> x ) e. A ) ) |
| 30 |
28 29
|
vtoclga |
|- ( S e. RR -> ( ph -> ( t e. T |-> S ) e. A ) ) |
| 31 |
7 30
|
mpcom |
|- ( ph -> ( t e. T |-> S ) e. A ) |
| 32 |
23 31
|
eqeltrid |
|- ( ph -> ( T X. { S } ) e. A ) |
| 33 |
|
nfcv |
|- F/_ t T |
| 34 |
3
|
nfsn |
|- F/_ t { S } |
| 35 |
33 34
|
nfxp |
|- F/_ t ( T X. { S } ) |
| 36 |
8 2 35
|
stoweidlem8 |
|- ( ( ph /\ H e. A /\ ( T X. { S } ) e. A ) -> ( t e. T |-> ( ( H ` t ) + ( ( T X. { S } ) ` t ) ) ) e. A ) |
| 37 |
11 32 36
|
mpd3an23 |
|- ( ph -> ( t e. T |-> ( ( H ` t ) + ( ( T X. { S } ) ` t ) ) ) e. A ) |
| 38 |
18 37
|
eqeltrd |
|- ( ph -> G e. A ) |
| 39 |
|
simpr |
|- ( ( ph /\ t e. T ) -> t e. T ) |
| 40 |
|
feq1 |
|- ( f = H -> ( f : T --> RR <-> H : T --> RR ) ) |
| 41 |
40
|
rspccva |
|- ( ( A. f e. A f : T --> RR /\ H e. A ) -> H : T --> RR ) |
| 42 |
10 11 41
|
syl2anc |
|- ( ph -> H : T --> RR ) |
| 43 |
42
|
ffvelcdmda |
|- ( ( ph /\ t e. T ) -> ( H ` t ) e. RR ) |
| 44 |
7
|
adantr |
|- ( ( ph /\ t e. T ) -> S e. RR ) |
| 45 |
43 44
|
readdcld |
|- ( ( ph /\ t e. T ) -> ( ( H ` t ) + S ) e. RR ) |
| 46 |
5
|
fvmpt2 |
|- ( ( t e. T /\ ( ( H ` t ) + S ) e. RR ) -> ( G ` t ) = ( ( H ` t ) + S ) ) |
| 47 |
39 45 46
|
syl2anc |
|- ( ( ph /\ t e. T ) -> ( G ` t ) = ( ( H ` t ) + S ) ) |
| 48 |
47
|
oveq1d |
|- ( ( ph /\ t e. T ) -> ( ( G ` t ) - ( F ` t ) ) = ( ( ( H ` t ) + S ) - ( F ` t ) ) ) |
| 49 |
43
|
recnd |
|- ( ( ph /\ t e. T ) -> ( H ` t ) e. CC ) |
| 50 |
6
|
ffvelcdmda |
|- ( ( ph /\ t e. T ) -> ( F ` t ) e. RR ) |
| 51 |
50
|
recnd |
|- ( ( ph /\ t e. T ) -> ( F ` t ) e. CC ) |
| 52 |
7
|
recnd |
|- ( ph -> S e. CC ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ t e. T ) -> S e. CC ) |
| 54 |
49 51 53
|
subsub3d |
|- ( ( ph /\ t e. T ) -> ( ( H ` t ) - ( ( F ` t ) - S ) ) = ( ( ( H ` t ) + S ) - ( F ` t ) ) ) |
| 55 |
48 54
|
eqtr4d |
|- ( ( ph /\ t e. T ) -> ( ( G ` t ) - ( F ` t ) ) = ( ( H ` t ) - ( ( F ` t ) - S ) ) ) |
| 56 |
55
|
fveq2d |
|- ( ( ph /\ t e. T ) -> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) = ( abs ` ( ( H ` t ) - ( ( F ` t ) - S ) ) ) ) |
| 57 |
12
|
r19.21bi |
|- ( ( ph /\ t e. T ) -> ( abs ` ( ( H ` t ) - ( ( F ` t ) - S ) ) ) < E ) |
| 58 |
56 57
|
eqbrtrd |
|- ( ( ph /\ t e. T ) -> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) < E ) |
| 59 |
58
|
ex |
|- ( ph -> ( t e. T -> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) < E ) ) |
| 60 |
4 59
|
ralrimi |
|- ( ph -> A. t e. T ( abs ` ( ( G ` t ) - ( F ` t ) ) ) < E ) |
| 61 |
1
|
nfeq2 |
|- F/ t f = G |
| 62 |
|
fveq1 |
|- ( f = G -> ( f ` t ) = ( G ` t ) ) |
| 63 |
62
|
oveq1d |
|- ( f = G -> ( ( f ` t ) - ( F ` t ) ) = ( ( G ` t ) - ( F ` t ) ) ) |
| 64 |
63
|
fveq2d |
|- ( f = G -> ( abs ` ( ( f ` t ) - ( F ` t ) ) ) = ( abs ` ( ( G ` t ) - ( F ` t ) ) ) ) |
| 65 |
64
|
breq1d |
|- ( f = G -> ( ( abs ` ( ( f ` t ) - ( F ` t ) ) ) < E <-> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) < E ) ) |
| 66 |
61 65
|
ralbid |
|- ( f = G -> ( A. t e. T ( abs ` ( ( f ` t ) - ( F ` t ) ) ) < E <-> A. t e. T ( abs ` ( ( G ` t ) - ( F ` t ) ) ) < E ) ) |
| 67 |
66
|
rspcev |
|- ( ( G e. A /\ A. t e. T ( abs ` ( ( G ` t ) - ( F ` t ) ) ) < E ) -> E. f e. A A. t e. T ( abs ` ( ( f ` t ) - ( F ` t ) ) ) < E ) |
| 68 |
38 60 67
|
syl2anc |
|- ( ph -> E. f e. A A. t e. T ( abs ` ( ( f ` t ) - ( F ` t ) ) ) < E ) |