| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem21.1 |
⊢ Ⅎ 𝑡 𝐺 |
| 2 |
|
stoweidlem21.2 |
⊢ Ⅎ 𝑡 𝐻 |
| 3 |
|
stoweidlem21.3 |
⊢ Ⅎ 𝑡 𝑆 |
| 4 |
|
stoweidlem21.4 |
⊢ Ⅎ 𝑡 𝜑 |
| 5 |
|
stoweidlem21.5 |
⊢ 𝐺 = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐻 ‘ 𝑡 ) + 𝑆 ) ) |
| 6 |
|
stoweidlem21.6 |
⊢ ( 𝜑 → 𝐹 : 𝑇 ⟶ ℝ ) |
| 7 |
|
stoweidlem21.7 |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 8 |
|
stoweidlem21.8 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 9 |
|
stoweidlem21.9 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
| 10 |
|
stoweidlem21.10 |
⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝐴 𝑓 : 𝑇 ⟶ ℝ ) |
| 11 |
|
stoweidlem21.11 |
⊢ ( 𝜑 → 𝐻 ∈ 𝐴 ) |
| 12 |
|
stoweidlem21.12 |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝐻 ‘ 𝑡 ) − ( ( 𝐹 ‘ 𝑡 ) − 𝑆 ) ) ) < 𝐸 ) |
| 13 |
|
fvconst2g |
⊢ ( ( 𝑆 ∈ ℝ ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑇 × { 𝑆 } ) ‘ 𝑡 ) = 𝑆 ) |
| 14 |
7 13
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑇 × { 𝑆 } ) ‘ 𝑡 ) = 𝑆 ) |
| 15 |
14
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑆 = ( ( 𝑇 × { 𝑆 } ) ‘ 𝑡 ) ) |
| 16 |
15
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐻 ‘ 𝑡 ) + 𝑆 ) = ( ( 𝐻 ‘ 𝑡 ) + ( ( 𝑇 × { 𝑆 } ) ‘ 𝑡 ) ) ) |
| 17 |
4 16
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐻 ‘ 𝑡 ) + 𝑆 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐻 ‘ 𝑡 ) + ( ( 𝑇 × { 𝑆 } ) ‘ 𝑡 ) ) ) ) |
| 18 |
5 17
|
eqtrid |
⊢ ( 𝜑 → 𝐺 = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐻 ‘ 𝑡 ) + ( ( 𝑇 × { 𝑆 } ) ‘ 𝑡 ) ) ) ) |
| 19 |
|
fconstmpt |
⊢ ( 𝑇 × { 𝑆 } ) = ( 𝑠 ∈ 𝑇 ↦ 𝑆 ) |
| 20 |
|
nfcv |
⊢ Ⅎ 𝑠 𝑆 |
| 21 |
|
eqidd |
⊢ ( 𝑠 = 𝑡 → 𝑆 = 𝑆 ) |
| 22 |
3 20 21
|
cbvmpt |
⊢ ( 𝑠 ∈ 𝑇 ↦ 𝑆 ) = ( 𝑡 ∈ 𝑇 ↦ 𝑆 ) |
| 23 |
19 22
|
eqtri |
⊢ ( 𝑇 × { 𝑆 } ) = ( 𝑡 ∈ 𝑇 ↦ 𝑆 ) |
| 24 |
3
|
nfeq2 |
⊢ Ⅎ 𝑡 𝑥 = 𝑆 |
| 25 |
|
simpl |
⊢ ( ( 𝑥 = 𝑆 ∧ 𝑡 ∈ 𝑇 ) → 𝑥 = 𝑆 ) |
| 26 |
24 25
|
mpteq2da |
⊢ ( 𝑥 = 𝑆 → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) = ( 𝑡 ∈ 𝑇 ↦ 𝑆 ) ) |
| 27 |
26
|
eleq1d |
⊢ ( 𝑥 = 𝑆 → ( ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ 𝑆 ) ∈ 𝐴 ) ) |
| 28 |
27
|
imbi2d |
⊢ ( 𝑥 = 𝑆 → ( ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) ↔ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 𝑆 ) ∈ 𝐴 ) ) ) |
| 29 |
9
|
expcom |
⊢ ( 𝑥 ∈ ℝ → ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) ) |
| 30 |
28 29
|
vtoclga |
⊢ ( 𝑆 ∈ ℝ → ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 𝑆 ) ∈ 𝐴 ) ) |
| 31 |
7 30
|
mpcom |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 𝑆 ) ∈ 𝐴 ) |
| 32 |
23 31
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑇 × { 𝑆 } ) ∈ 𝐴 ) |
| 33 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑇 |
| 34 |
3
|
nfsn |
⊢ Ⅎ 𝑡 { 𝑆 } |
| 35 |
33 34
|
nfxp |
⊢ Ⅎ 𝑡 ( 𝑇 × { 𝑆 } ) |
| 36 |
8 2 35
|
stoweidlem8 |
⊢ ( ( 𝜑 ∧ 𝐻 ∈ 𝐴 ∧ ( 𝑇 × { 𝑆 } ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐻 ‘ 𝑡 ) + ( ( 𝑇 × { 𝑆 } ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 37 |
11 32 36
|
mpd3an23 |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐻 ‘ 𝑡 ) + ( ( 𝑇 × { 𝑆 } ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 38 |
18 37
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ 𝐴 ) |
| 39 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
| 40 |
|
feq1 |
⊢ ( 𝑓 = 𝐻 → ( 𝑓 : 𝑇 ⟶ ℝ ↔ 𝐻 : 𝑇 ⟶ ℝ ) ) |
| 41 |
40
|
rspccva |
⊢ ( ( ∀ 𝑓 ∈ 𝐴 𝑓 : 𝑇 ⟶ ℝ ∧ 𝐻 ∈ 𝐴 ) → 𝐻 : 𝑇 ⟶ ℝ ) |
| 42 |
10 11 41
|
syl2anc |
⊢ ( 𝜑 → 𝐻 : 𝑇 ⟶ ℝ ) |
| 43 |
42
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑡 ) ∈ ℝ ) |
| 44 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑆 ∈ ℝ ) |
| 45 |
43 44
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐻 ‘ 𝑡 ) + 𝑆 ) ∈ ℝ ) |
| 46 |
5
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( ( 𝐻 ‘ 𝑡 ) + 𝑆 ) ∈ ℝ ) → ( 𝐺 ‘ 𝑡 ) = ( ( 𝐻 ‘ 𝑡 ) + 𝑆 ) ) |
| 47 |
39 45 46
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑡 ) = ( ( 𝐻 ‘ 𝑡 ) + 𝑆 ) ) |
| 48 |
47
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) = ( ( ( 𝐻 ‘ 𝑡 ) + 𝑆 ) − ( 𝐹 ‘ 𝑡 ) ) ) |
| 49 |
43
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑡 ) ∈ ℂ ) |
| 50 |
6
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
| 51 |
50
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 52 |
7
|
recnd |
⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑆 ∈ ℂ ) |
| 54 |
49 51 53
|
subsub3d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐻 ‘ 𝑡 ) − ( ( 𝐹 ‘ 𝑡 ) − 𝑆 ) ) = ( ( ( 𝐻 ‘ 𝑡 ) + 𝑆 ) − ( 𝐹 ‘ 𝑡 ) ) ) |
| 55 |
48 54
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) = ( ( 𝐻 ‘ 𝑡 ) − ( ( 𝐹 ‘ 𝑡 ) − 𝑆 ) ) ) |
| 56 |
55
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) = ( abs ‘ ( ( 𝐻 ‘ 𝑡 ) − ( ( 𝐹 ‘ 𝑡 ) − 𝑆 ) ) ) ) |
| 57 |
12
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑡 ) − ( ( 𝐹 ‘ 𝑡 ) − 𝑆 ) ) ) < 𝐸 ) |
| 58 |
56 57
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) |
| 59 |
58
|
ex |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 → ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
| 60 |
4 59
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) |
| 61 |
1
|
nfeq2 |
⊢ Ⅎ 𝑡 𝑓 = 𝐺 |
| 62 |
|
fveq1 |
⊢ ( 𝑓 = 𝐺 → ( 𝑓 ‘ 𝑡 ) = ( 𝐺 ‘ 𝑡 ) ) |
| 63 |
62
|
oveq1d |
⊢ ( 𝑓 = 𝐺 → ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) = ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) |
| 64 |
63
|
fveq2d |
⊢ ( 𝑓 = 𝐺 → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 65 |
64
|
breq1d |
⊢ ( 𝑓 = 𝐺 → ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
| 66 |
61 65
|
ralbid |
⊢ ( 𝑓 = 𝐺 → ( ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ↔ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
| 67 |
66
|
rspcev |
⊢ ( ( 𝐺 ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) → ∃ 𝑓 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) |
| 68 |
38 60 67
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑓 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) |