| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem21.1 | ⊢ Ⅎ 𝑡 𝐺 | 
						
							| 2 |  | stoweidlem21.2 | ⊢ Ⅎ 𝑡 𝐻 | 
						
							| 3 |  | stoweidlem21.3 | ⊢ Ⅎ 𝑡 𝑆 | 
						
							| 4 |  | stoweidlem21.4 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 5 |  | stoweidlem21.5 | ⊢ 𝐺  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐻 ‘ 𝑡 )  +  𝑆 ) ) | 
						
							| 6 |  | stoweidlem21.6 | ⊢ ( 𝜑  →  𝐹 : 𝑇 ⟶ ℝ ) | 
						
							| 7 |  | stoweidlem21.7 | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 8 |  | stoweidlem21.8 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 9 |  | stoweidlem21.9 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 10 |  | stoweidlem21.10 | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  𝐴 𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 11 |  | stoweidlem21.11 | ⊢ ( 𝜑  →  𝐻  ∈  𝐴 ) | 
						
							| 12 |  | stoweidlem21.12 | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( 𝐻 ‘ 𝑡 )  −  ( ( 𝐹 ‘ 𝑡 )  −  𝑆 ) ) )  <  𝐸 ) | 
						
							| 13 |  | fvconst2g | ⊢ ( ( 𝑆  ∈  ℝ  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑇  ×  { 𝑆 } ) ‘ 𝑡 )  =  𝑆 ) | 
						
							| 14 | 7 13 | sylan | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑇  ×  { 𝑆 } ) ‘ 𝑡 )  =  𝑆 ) | 
						
							| 15 | 14 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑆  =  ( ( 𝑇  ×  { 𝑆 } ) ‘ 𝑡 ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐻 ‘ 𝑡 )  +  𝑆 )  =  ( ( 𝐻 ‘ 𝑡 )  +  ( ( 𝑇  ×  { 𝑆 } ) ‘ 𝑡 ) ) ) | 
						
							| 17 | 4 16 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐻 ‘ 𝑡 )  +  𝑆 ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐻 ‘ 𝑡 )  +  ( ( 𝑇  ×  { 𝑆 } ) ‘ 𝑡 ) ) ) ) | 
						
							| 18 | 5 17 | eqtrid | ⊢ ( 𝜑  →  𝐺  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐻 ‘ 𝑡 )  +  ( ( 𝑇  ×  { 𝑆 } ) ‘ 𝑡 ) ) ) ) | 
						
							| 19 |  | fconstmpt | ⊢ ( 𝑇  ×  { 𝑆 } )  =  ( 𝑠  ∈  𝑇  ↦  𝑆 ) | 
						
							| 20 |  | nfcv | ⊢ Ⅎ 𝑠 𝑆 | 
						
							| 21 |  | eqidd | ⊢ ( 𝑠  =  𝑡  →  𝑆  =  𝑆 ) | 
						
							| 22 | 3 20 21 | cbvmpt | ⊢ ( 𝑠  ∈  𝑇  ↦  𝑆 )  =  ( 𝑡  ∈  𝑇  ↦  𝑆 ) | 
						
							| 23 | 19 22 | eqtri | ⊢ ( 𝑇  ×  { 𝑆 } )  =  ( 𝑡  ∈  𝑇  ↦  𝑆 ) | 
						
							| 24 | 3 | nfeq2 | ⊢ Ⅎ 𝑡 𝑥  =  𝑆 | 
						
							| 25 |  | simpl | ⊢ ( ( 𝑥  =  𝑆  ∧  𝑡  ∈  𝑇 )  →  𝑥  =  𝑆 ) | 
						
							| 26 | 24 25 | mpteq2da | ⊢ ( 𝑥  =  𝑆  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  =  ( 𝑡  ∈  𝑇  ↦  𝑆 ) ) | 
						
							| 27 | 26 | eleq1d | ⊢ ( 𝑥  =  𝑆  →  ( ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  𝑆 )  ∈  𝐴 ) ) | 
						
							| 28 | 27 | imbi2d | ⊢ ( 𝑥  =  𝑆  →  ( ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 )  ↔  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  𝑆 )  ∈  𝐴 ) ) ) | 
						
							| 29 | 9 | expcom | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) ) | 
						
							| 30 | 28 29 | vtoclga | ⊢ ( 𝑆  ∈  ℝ  →  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  𝑆 )  ∈  𝐴 ) ) | 
						
							| 31 | 7 30 | mpcom | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  𝑆 )  ∈  𝐴 ) | 
						
							| 32 | 23 31 | eqeltrid | ⊢ ( 𝜑  →  ( 𝑇  ×  { 𝑆 } )  ∈  𝐴 ) | 
						
							| 33 |  | nfcv | ⊢ Ⅎ 𝑡 𝑇 | 
						
							| 34 | 3 | nfsn | ⊢ Ⅎ 𝑡 { 𝑆 } | 
						
							| 35 | 33 34 | nfxp | ⊢ Ⅎ 𝑡 ( 𝑇  ×  { 𝑆 } ) | 
						
							| 36 | 8 2 35 | stoweidlem8 | ⊢ ( ( 𝜑  ∧  𝐻  ∈  𝐴  ∧  ( 𝑇  ×  { 𝑆 } )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐻 ‘ 𝑡 )  +  ( ( 𝑇  ×  { 𝑆 } ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 37 | 11 32 36 | mpd3an23 | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐻 ‘ 𝑡 )  +  ( ( 𝑇  ×  { 𝑆 } ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 38 | 18 37 | eqeltrd | ⊢ ( 𝜑  →  𝐺  ∈  𝐴 ) | 
						
							| 39 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  𝑇 ) | 
						
							| 40 |  | feq1 | ⊢ ( 𝑓  =  𝐻  →  ( 𝑓 : 𝑇 ⟶ ℝ  ↔  𝐻 : 𝑇 ⟶ ℝ ) ) | 
						
							| 41 | 40 | rspccva | ⊢ ( ( ∀ 𝑓  ∈  𝐴 𝑓 : 𝑇 ⟶ ℝ  ∧  𝐻  ∈  𝐴 )  →  𝐻 : 𝑇 ⟶ ℝ ) | 
						
							| 42 | 10 11 41 | syl2anc | ⊢ ( 𝜑  →  𝐻 : 𝑇 ⟶ ℝ ) | 
						
							| 43 | 42 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐻 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 44 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑆  ∈  ℝ ) | 
						
							| 45 | 43 44 | readdcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐻 ‘ 𝑡 )  +  𝑆 )  ∈  ℝ ) | 
						
							| 46 | 5 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  ( ( 𝐻 ‘ 𝑡 )  +  𝑆 )  ∈  ℝ )  →  ( 𝐺 ‘ 𝑡 )  =  ( ( 𝐻 ‘ 𝑡 )  +  𝑆 ) ) | 
						
							| 47 | 39 45 46 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑡 )  =  ( ( 𝐻 ‘ 𝑡 )  +  𝑆 ) ) | 
						
							| 48 | 47 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) )  =  ( ( ( 𝐻 ‘ 𝑡 )  +  𝑆 )  −  ( 𝐹 ‘ 𝑡 ) ) ) | 
						
							| 49 | 43 | recnd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐻 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 50 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 51 | 50 | recnd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 52 | 7 | recnd | ⊢ ( 𝜑  →  𝑆  ∈  ℂ ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑆  ∈  ℂ ) | 
						
							| 54 | 49 51 53 | subsub3d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐻 ‘ 𝑡 )  −  ( ( 𝐹 ‘ 𝑡 )  −  𝑆 ) )  =  ( ( ( 𝐻 ‘ 𝑡 )  +  𝑆 )  −  ( 𝐹 ‘ 𝑡 ) ) ) | 
						
							| 55 | 48 54 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) )  =  ( ( 𝐻 ‘ 𝑡 )  −  ( ( 𝐹 ‘ 𝑡 )  −  𝑆 ) ) ) | 
						
							| 56 | 55 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( abs ‘ ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  =  ( abs ‘ ( ( 𝐻 ‘ 𝑡 )  −  ( ( 𝐹 ‘ 𝑡 )  −  𝑆 ) ) ) ) | 
						
							| 57 | 12 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( abs ‘ ( ( 𝐻 ‘ 𝑡 )  −  ( ( 𝐹 ‘ 𝑡 )  −  𝑆 ) ) )  <  𝐸 ) | 
						
							| 58 | 56 57 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( abs ‘ ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) | 
						
							| 59 | 58 | ex | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  →  ( abs ‘ ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) ) | 
						
							| 60 | 4 59 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) | 
						
							| 61 | 1 | nfeq2 | ⊢ Ⅎ 𝑡 𝑓  =  𝐺 | 
						
							| 62 |  | fveq1 | ⊢ ( 𝑓  =  𝐺  →  ( 𝑓 ‘ 𝑡 )  =  ( 𝐺 ‘ 𝑡 ) ) | 
						
							| 63 | 62 | oveq1d | ⊢ ( 𝑓  =  𝐺  →  ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) )  =  ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) ) | 
						
							| 64 | 63 | fveq2d | ⊢ ( 𝑓  =  𝐺  →  ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  =  ( abs ‘ ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) ) ) | 
						
							| 65 | 64 | breq1d | ⊢ ( 𝑓  =  𝐺  →  ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸  ↔  ( abs ‘ ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) ) | 
						
							| 66 | 61 65 | ralbid | ⊢ ( 𝑓  =  𝐺  →  ( ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸  ↔  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) ) | 
						
							| 67 | 66 | rspcev | ⊢ ( ( 𝐺  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 )  →  ∃ 𝑓  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) | 
						
							| 68 | 38 60 67 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑓  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) |