| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem22.8 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 2 |  | stoweidlem22.9 | ⊢ Ⅎ 𝑡 𝐹 | 
						
							| 3 |  | stoweidlem22.10 | ⊢ Ⅎ 𝑡 𝐺 | 
						
							| 4 |  | stoweidlem22.1 | ⊢ 𝐻  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  −  ( 𝐺 ‘ 𝑡 ) ) ) | 
						
							| 5 |  | stoweidlem22.2 | ⊢ 𝐼  =  ( 𝑡  ∈  𝑇  ↦  - 1 ) | 
						
							| 6 |  | stoweidlem22.3 | ⊢ 𝐿  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐼 ‘ 𝑡 )  ·  ( 𝐺 ‘ 𝑡 ) ) ) | 
						
							| 7 |  | stoweidlem22.4 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 8 |  | stoweidlem22.5 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 9 |  | stoweidlem22.6 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 10 |  | stoweidlem22.7 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 11 | 2 | nfel1 | ⊢ Ⅎ 𝑡 𝐹  ∈  𝐴 | 
						
							| 12 | 3 | nfel1 | ⊢ Ⅎ 𝑡 𝐺  ∈  𝐴 | 
						
							| 13 | 1 11 12 | nf3an | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 ) | 
						
							| 14 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  𝑇 ) | 
						
							| 15 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  𝜑 ) | 
						
							| 16 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 17 | 10 | stoweidlem4 | ⊢ ( ( 𝜑  ∧  - 1  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  - 1 )  ∈  𝐴 ) | 
						
							| 18 | 16 17 | mpan2 | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  - 1 )  ∈  𝐴 ) | 
						
							| 19 | 5 18 | eqeltrid | ⊢ ( 𝜑  →  𝐼  ∈  𝐴 ) | 
						
							| 20 |  | eleq1 | ⊢ ( 𝑓  =  𝐼  →  ( 𝑓  ∈  𝐴  ↔  𝐼  ∈  𝐴 ) ) | 
						
							| 21 | 20 | anbi2d | ⊢ ( 𝑓  =  𝐼  →  ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝐼  ∈  𝐴 ) ) ) | 
						
							| 22 |  | feq1 | ⊢ ( 𝑓  =  𝐼  →  ( 𝑓 : 𝑇 ⟶ ℝ  ↔  𝐼 : 𝑇 ⟶ ℝ ) ) | 
						
							| 23 | 21 22 | imbi12d | ⊢ ( 𝑓  =  𝐼  →  ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ )  ↔  ( ( 𝜑  ∧  𝐼  ∈  𝐴 )  →  𝐼 : 𝑇 ⟶ ℝ ) ) ) | 
						
							| 24 | 23 7 | vtoclg | ⊢ ( 𝐼  ∈  𝐴  →  ( ( 𝜑  ∧  𝐼  ∈  𝐴 )  →  𝐼 : 𝑇 ⟶ ℝ ) ) | 
						
							| 25 | 24 | anabsi7 | ⊢ ( ( 𝜑  ∧  𝐼  ∈  𝐴 )  →  𝐼 : 𝑇 ⟶ ℝ ) | 
						
							| 26 | 15 19 25 | syl2anc2 | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  𝐼 : 𝑇 ⟶ ℝ ) | 
						
							| 27 | 26 14 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝐼 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 28 |  | simpl3 | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  𝐺  ∈  𝐴 ) | 
						
							| 29 |  | eleq1 | ⊢ ( 𝑓  =  𝐺  →  ( 𝑓  ∈  𝐴  ↔  𝐺  ∈  𝐴 ) ) | 
						
							| 30 | 29 | anbi2d | ⊢ ( 𝑓  =  𝐺  →  ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝐺  ∈  𝐴 ) ) ) | 
						
							| 31 |  | feq1 | ⊢ ( 𝑓  =  𝐺  →  ( 𝑓 : 𝑇 ⟶ ℝ  ↔  𝐺 : 𝑇 ⟶ ℝ ) ) | 
						
							| 32 | 30 31 | imbi12d | ⊢ ( 𝑓  =  𝐺  →  ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ )  ↔  ( ( 𝜑  ∧  𝐺  ∈  𝐴 )  →  𝐺 : 𝑇 ⟶ ℝ ) ) ) | 
						
							| 33 | 32 7 | vtoclg | ⊢ ( 𝐺  ∈  𝐴  →  ( ( 𝜑  ∧  𝐺  ∈  𝐴 )  →  𝐺 : 𝑇 ⟶ ℝ ) ) | 
						
							| 34 | 33 | anabsi7 | ⊢ ( ( 𝜑  ∧  𝐺  ∈  𝐴 )  →  𝐺 : 𝑇 ⟶ ℝ ) | 
						
							| 35 | 34 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝐺  ∈  𝐴  ∧  𝑡  ∈  𝑇 )  →  𝐺 : 𝑇 ⟶ ℝ ) | 
						
							| 36 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝐺  ∈  𝐴  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  𝑇 ) | 
						
							| 37 | 35 36 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝐺  ∈  𝐴  ∧  𝑡  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 38 | 15 28 14 37 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 39 | 27 38 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐼 ‘ 𝑡 )  ·  ( 𝐺 ‘ 𝑡 ) )  ∈  ℝ ) | 
						
							| 40 | 6 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  ( ( 𝐼 ‘ 𝑡 )  ·  ( 𝐺 ‘ 𝑡 ) )  ∈  ℝ )  →  ( 𝐿 ‘ 𝑡 )  =  ( ( 𝐼 ‘ 𝑡 )  ·  ( 𝐺 ‘ 𝑡 ) ) ) | 
						
							| 41 | 14 39 40 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝐿 ‘ 𝑡 )  =  ( ( 𝐼 ‘ 𝑡 )  ·  ( 𝐺 ‘ 𝑡 ) ) ) | 
						
							| 42 | 5 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  - 1  ∈  ℝ )  →  ( 𝐼 ‘ 𝑡 )  =  - 1 ) | 
						
							| 43 | 16 42 | mpan2 | ⊢ ( 𝑡  ∈  𝑇  →  ( 𝐼 ‘ 𝑡 )  =  - 1 ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝐼 ‘ 𝑡 )  =  - 1 ) | 
						
							| 45 | 44 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐼 ‘ 𝑡 )  ·  ( 𝐺 ‘ 𝑡 ) )  =  ( - 1  ·  ( 𝐺 ‘ 𝑡 ) ) ) | 
						
							| 46 | 38 | recnd | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 47 | 46 | mulm1d | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( - 1  ·  ( 𝐺 ‘ 𝑡 ) )  =  - ( 𝐺 ‘ 𝑡 ) ) | 
						
							| 48 | 41 45 47 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝐿 ‘ 𝑡 )  =  - ( 𝐺 ‘ 𝑡 ) ) | 
						
							| 49 | 48 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑡 )  +  ( 𝐿 ‘ 𝑡 ) )  =  ( ( 𝐹 ‘ 𝑡 )  +  - ( 𝐺 ‘ 𝑡 ) ) ) | 
						
							| 50 |  | simpl2 | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  𝐹  ∈  𝐴 ) | 
						
							| 51 |  | eleq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓  ∈  𝐴  ↔  𝐹  ∈  𝐴 ) ) | 
						
							| 52 | 51 | anbi2d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝐹  ∈  𝐴 ) ) ) | 
						
							| 53 |  | feq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 : 𝑇 ⟶ ℝ  ↔  𝐹 : 𝑇 ⟶ ℝ ) ) | 
						
							| 54 | 52 53 | imbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ )  ↔  ( ( 𝜑  ∧  𝐹  ∈  𝐴 )  →  𝐹 : 𝑇 ⟶ ℝ ) ) ) | 
						
							| 55 | 54 7 | vtoclg | ⊢ ( 𝐹  ∈  𝐴  →  ( ( 𝜑  ∧  𝐹  ∈  𝐴 )  →  𝐹 : 𝑇 ⟶ ℝ ) ) | 
						
							| 56 | 55 | anabsi7 | ⊢ ( ( 𝜑  ∧  𝐹  ∈  𝐴 )  →  𝐹 : 𝑇 ⟶ ℝ ) | 
						
							| 57 | 15 50 56 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  𝐹 : 𝑇 ⟶ ℝ ) | 
						
							| 58 | 57 14 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 59 | 58 | recnd | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 60 | 59 46 | negsubd | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑡 )  +  - ( 𝐺 ‘ 𝑡 ) )  =  ( ( 𝐹 ‘ 𝑡 )  −  ( 𝐺 ‘ 𝑡 ) ) ) | 
						
							| 61 | 49 60 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑡 )  −  ( 𝐺 ‘ 𝑡 ) )  =  ( ( 𝐹 ‘ 𝑡 )  +  ( 𝐿 ‘ 𝑡 ) ) ) | 
						
							| 62 | 13 61 | mpteq2da | ⊢ ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  −  ( 𝐺 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  +  ( 𝐿 ‘ 𝑡 ) ) ) ) | 
						
							| 63 | 19 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  →  𝐼  ∈  𝐴 ) | 
						
							| 64 |  | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  - 1 ) | 
						
							| 65 | 5 64 | nfcxfr | ⊢ Ⅎ 𝑡 𝐼 | 
						
							| 66 | 65 | nfeq2 | ⊢ Ⅎ 𝑡 𝑓  =  𝐼 | 
						
							| 67 | 3 | nfeq2 | ⊢ Ⅎ 𝑡 𝑔  =  𝐺 | 
						
							| 68 | 66 67 9 | stoweidlem6 | ⊢ ( ( 𝜑  ∧  𝐼  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐼 ‘ 𝑡 )  ·  ( 𝐺 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 69 | 63 68 | syld3an2 | ⊢ ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐼 ‘ 𝑡 )  ·  ( 𝐺 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 70 | 6 69 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  →  𝐿  ∈  𝐴 ) | 
						
							| 71 |  | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  ( ( 𝐼 ‘ 𝑡 )  ·  ( 𝐺 ‘ 𝑡 ) ) ) | 
						
							| 72 | 6 71 | nfcxfr | ⊢ Ⅎ 𝑡 𝐿 | 
						
							| 73 | 8 2 72 | stoweidlem8 | ⊢ ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐿  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  +  ( 𝐿 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 74 | 70 73 | syld3an3 | ⊢ ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  +  ( 𝐿 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 75 | 62 74 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  −  ( 𝐺 ‘ 𝑡 ) ) )  ∈  𝐴 ) |