| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem4.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 2 |  | eleq1 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑥  ∈  ℝ  ↔  𝐵  ∈  ℝ ) ) | 
						
							| 3 | 2 | anbi2d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ↔  ( 𝜑  ∧  𝐵  ∈  ℝ ) ) ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝑥  =  𝐵  ∧  𝑡  ∈  𝑇 )  →  𝑥  =  𝐵 ) | 
						
							| 5 | 4 | mpteq2dva | ⊢ ( 𝑥  =  𝐵  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  =  ( 𝑡  ∈  𝑇  ↦  𝐵 ) ) | 
						
							| 6 | 5 | eleq1d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  𝐵 )  ∈  𝐴 ) ) | 
						
							| 7 | 3 6 | imbi12d | ⊢ ( 𝑥  =  𝐵  →  ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 )  ↔  ( ( 𝜑  ∧  𝐵  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝐵 )  ∈  𝐴 ) ) ) | 
						
							| 8 | 7 1 | vtoclg | ⊢ ( 𝐵  ∈  ℝ  →  ( ( 𝜑  ∧  𝐵  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝐵 )  ∈  𝐴 ) ) | 
						
							| 9 | 8 | anabsi7 | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝐵 )  ∈  𝐴 ) |