| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem5.1 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 2 |  | stoweidlem5.2 | ⊢ 𝐷  =  if ( 𝐶  ≤  ( 1  /  2 ) ,  𝐶 ,  ( 1  /  2 ) ) | 
						
							| 3 |  | stoweidlem5.3 | ⊢ ( 𝜑  →  𝑃 : 𝑇 ⟶ ℝ ) | 
						
							| 4 |  | stoweidlem5.4 | ⊢ ( 𝜑  →  𝑄  ⊆  𝑇 ) | 
						
							| 5 |  | stoweidlem5.5 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
						
							| 6 |  | stoweidlem5.6 | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝑄 𝐶  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 7 |  | halfre | ⊢ ( 1  /  2 )  ∈  ℝ | 
						
							| 8 |  | halfgt0 | ⊢ 0  <  ( 1  /  2 ) | 
						
							| 9 | 7 8 | elrpii | ⊢ ( 1  /  2 )  ∈  ℝ+ | 
						
							| 10 |  | ifcl | ⊢ ( ( 𝐶  ∈  ℝ+  ∧  ( 1  /  2 )  ∈  ℝ+ )  →  if ( 𝐶  ≤  ( 1  /  2 ) ,  𝐶 ,  ( 1  /  2 ) )  ∈  ℝ+ ) | 
						
							| 11 | 5 9 10 | sylancl | ⊢ ( 𝜑  →  if ( 𝐶  ≤  ( 1  /  2 ) ,  𝐶 ,  ( 1  /  2 ) )  ∈  ℝ+ ) | 
						
							| 12 | 2 11 | eqeltrid | ⊢ ( 𝜑  →  𝐷  ∈  ℝ+ ) | 
						
							| 13 | 12 | rpred | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 14 | 7 | a1i | ⊢ ( 𝜑  →  ( 1  /  2 )  ∈  ℝ ) | 
						
							| 15 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 16 | 5 | rpred | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 17 |  | min2 | ⊢ ( ( 𝐶  ∈  ℝ  ∧  ( 1  /  2 )  ∈  ℝ )  →  if ( 𝐶  ≤  ( 1  /  2 ) ,  𝐶 ,  ( 1  /  2 ) )  ≤  ( 1  /  2 ) ) | 
						
							| 18 | 16 7 17 | sylancl | ⊢ ( 𝜑  →  if ( 𝐶  ≤  ( 1  /  2 ) ,  𝐶 ,  ( 1  /  2 ) )  ≤  ( 1  /  2 ) ) | 
						
							| 19 | 2 18 | eqbrtrid | ⊢ ( 𝜑  →  𝐷  ≤  ( 1  /  2 ) ) | 
						
							| 20 |  | halflt1 | ⊢ ( 1  /  2 )  <  1 | 
						
							| 21 | 20 | a1i | ⊢ ( 𝜑  →  ( 1  /  2 )  <  1 ) | 
						
							| 22 | 13 14 15 19 21 | lelttrd | ⊢ ( 𝜑  →  𝐷  <  1 ) | 
						
							| 23 | 11 | rpred | ⊢ ( 𝜑  →  if ( 𝐶  ≤  ( 1  /  2 ) ,  𝐶 ,  ( 1  /  2 ) )  ∈  ℝ ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑄 )  →  if ( 𝐶  ≤  ( 1  /  2 ) ,  𝐶 ,  ( 1  /  2 ) )  ∈  ℝ ) | 
						
							| 25 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑄 )  →  𝐶  ∈  ℝ ) | 
						
							| 26 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑄 )  →  𝑃 : 𝑇 ⟶ ℝ ) | 
						
							| 27 | 4 | sselda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑄 )  →  𝑡  ∈  𝑇 ) | 
						
							| 28 | 26 27 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑄 )  →  ( 𝑃 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 29 |  | min1 | ⊢ ( ( 𝐶  ∈  ℝ  ∧  ( 1  /  2 )  ∈  ℝ )  →  if ( 𝐶  ≤  ( 1  /  2 ) ,  𝐶 ,  ( 1  /  2 ) )  ≤  𝐶 ) | 
						
							| 30 | 16 7 29 | sylancl | ⊢ ( 𝜑  →  if ( 𝐶  ≤  ( 1  /  2 ) ,  𝐶 ,  ( 1  /  2 ) )  ≤  𝐶 ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑄 )  →  if ( 𝐶  ≤  ( 1  /  2 ) ,  𝐶 ,  ( 1  /  2 ) )  ≤  𝐶 ) | 
						
							| 32 | 6 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑄 )  →  𝐶  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 33 | 24 25 28 31 32 | letrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑄 )  →  if ( 𝐶  ≤  ( 1  /  2 ) ,  𝐶 ,  ( 1  /  2 ) )  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 34 | 2 33 | eqbrtrid | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑄 )  →  𝐷  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 35 | 34 | ex | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑄  →  𝐷  ≤  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 36 | 1 35 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝑄 𝐷  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 37 |  | eleq1 | ⊢ ( 𝑑  =  𝐷  →  ( 𝑑  ∈  ℝ+  ↔  𝐷  ∈  ℝ+ ) ) | 
						
							| 38 |  | breq1 | ⊢ ( 𝑑  =  𝐷  →  ( 𝑑  <  1  ↔  𝐷  <  1 ) ) | 
						
							| 39 |  | breq1 | ⊢ ( 𝑑  =  𝐷  →  ( 𝑑  ≤  ( 𝑃 ‘ 𝑡 )  ↔  𝐷  ≤  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 40 | 39 | ralbidv | ⊢ ( 𝑑  =  𝐷  →  ( ∀ 𝑡  ∈  𝑄 𝑑  ≤  ( 𝑃 ‘ 𝑡 )  ↔  ∀ 𝑡  ∈  𝑄 𝐷  ≤  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 41 | 37 38 40 | 3anbi123d | ⊢ ( 𝑑  =  𝐷  →  ( ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  𝑄 𝑑  ≤  ( 𝑃 ‘ 𝑡 ) )  ↔  ( 𝐷  ∈  ℝ+  ∧  𝐷  <  1  ∧  ∀ 𝑡  ∈  𝑄 𝐷  ≤  ( 𝑃 ‘ 𝑡 ) ) ) ) | 
						
							| 42 | 41 | spcegv | ⊢ ( 𝐷  ∈  ℝ+  →  ( ( 𝐷  ∈  ℝ+  ∧  𝐷  <  1  ∧  ∀ 𝑡  ∈  𝑄 𝐷  ≤  ( 𝑃 ‘ 𝑡 ) )  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  𝑄 𝑑  ≤  ( 𝑃 ‘ 𝑡 ) ) ) ) | 
						
							| 43 | 12 42 | syl | ⊢ ( 𝜑  →  ( ( 𝐷  ∈  ℝ+  ∧  𝐷  <  1  ∧  ∀ 𝑡  ∈  𝑄 𝐷  ≤  ( 𝑃 ‘ 𝑡 ) )  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  𝑄 𝑑  ≤  ( 𝑃 ‘ 𝑡 ) ) ) ) | 
						
							| 44 | 12 22 36 43 | mp3and | ⊢ ( 𝜑  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  𝑄 𝑑  ≤  ( 𝑃 ‘ 𝑡 ) ) ) |