| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem6.1 | ⊢ Ⅎ 𝑡 𝑓  =  𝐹 | 
						
							| 2 |  | stoweidlem6.2 | ⊢ Ⅎ 𝑡 𝑔  =  𝐺 | 
						
							| 3 |  | stoweidlem6.3 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 4 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  →  𝐺  ∈  𝐴 ) | 
						
							| 5 |  | eleq1 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑔  ∈  𝐴  ↔  𝐺  ∈  𝐴 ) ) | 
						
							| 6 | 5 | 3anbi3d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 ) ) ) | 
						
							| 7 |  | fveq1 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑔 ‘ 𝑡 )  =  ( 𝐺 ‘ 𝑡 ) ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) )  =  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐺 ‘ 𝑡 ) ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) )  =  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐺 ‘ 𝑡 ) ) ) | 
						
							| 10 | 2 9 | mpteq2da | ⊢ ( 𝑔  =  𝐺  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐺 ‘ 𝑡 ) ) ) ) | 
						
							| 11 | 10 | eleq1d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐺 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 12 | 6 11 | imbi12d | ⊢ ( 𝑔  =  𝐺  →  ( ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  ↔  ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐺 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) ) | 
						
							| 13 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  𝐹  ∈  𝐴 ) | 
						
							| 14 |  | eleq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓  ∈  𝐴  ↔  𝐹  ∈  𝐴 ) ) | 
						
							| 15 | 14 | 3anbi2d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝑔  ∈  𝐴 ) ) ) | 
						
							| 16 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑡 )  =  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) )  =  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) )  =  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) | 
						
							| 19 | 1 18 | mpteq2da | ⊢ ( 𝑓  =  𝐹  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) ) | 
						
							| 20 | 19 | eleq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 21 | 15 20 | imbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  ↔  ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) ) | 
						
							| 22 | 21 3 | vtoclg | ⊢ ( 𝐹  ∈  𝐴  →  ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 23 | 13 22 | mpcom | ⊢ ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 24 | 12 23 | vtoclg | ⊢ ( 𝐺  ∈  𝐴  →  ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐺 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 25 | 4 24 | mpcom | ⊢ ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  ·  ( 𝐺 ‘ 𝑡 ) ) )  ∈  𝐴 ) |