| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem7.1 | ⊢ 𝐹  =  ( 𝑖  ∈  ℕ0  ↦  ( ( 1  /  𝐴 ) ↑ 𝑖 ) ) | 
						
							| 2 |  | stoweidlem7.2 | ⊢ 𝐺  =  ( 𝑖  ∈  ℕ0  ↦  ( 𝐵 ↑ 𝑖 ) ) | 
						
							| 3 |  | stoweidlem7.3 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | stoweidlem7.4 | ⊢ ( 𝜑  →  1  <  𝐴 ) | 
						
							| 5 |  | stoweidlem7.5 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
						
							| 6 |  | stoweidlem7.6 | ⊢ ( 𝜑  →  𝐵  <  1 ) | 
						
							| 7 |  | stoweidlem7.7 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 8 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 9 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑖  =  𝑘  →  ( 𝐵 ↑ 𝑖 )  =  ( 𝐵 ↑ 𝑘 ) ) | 
						
							| 11 |  | nnnn0 | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℕ0 ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ0 ) | 
						
							| 13 | 5 | rpcnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐵  ∈  ℂ ) | 
						
							| 15 | 14 12 | expcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐵 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 16 | 2 10 12 15 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐵 ↑ 𝑘 ) ) | 
						
							| 17 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 18 | 17 | renegcld | ⊢ ( 𝜑  →  - 1  ∈  ℝ ) | 
						
							| 19 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 20 | 5 | rpred | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 21 |  | neg1lt0 | ⊢ - 1  <  0 | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  - 1  <  0 ) | 
						
							| 23 | 5 | rpgt0d | ⊢ ( 𝜑  →  0  <  𝐵 ) | 
						
							| 24 | 18 19 20 22 23 | lttrd | ⊢ ( 𝜑  →  - 1  <  𝐵 ) | 
						
							| 25 | 20 17 | absltd | ⊢ ( 𝜑  →  ( ( abs ‘ 𝐵 )  <  1  ↔  ( - 1  <  𝐵  ∧  𝐵  <  1 ) ) ) | 
						
							| 26 | 24 6 25 | mpbir2and | ⊢ ( 𝜑  →  ( abs ‘ 𝐵 )  <  1 ) | 
						
							| 27 | 13 26 | expcnv | ⊢ ( 𝜑  →  ( 𝑖  ∈  ℕ0  ↦  ( 𝐵 ↑ 𝑖 ) )  ⇝  0 ) | 
						
							| 28 | 2 27 | eqbrtrid | ⊢ ( 𝜑  →  𝐺  ⇝  0 ) | 
						
							| 29 | 8 9 7 16 28 | climi | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) ) | 
						
							| 30 |  | r19.26 | ⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 )  ↔  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) ) | 
						
							| 31 | 30 | simprbi | ⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) | 
						
							| 32 | 31 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) | 
						
							| 33 |  | oveq2 | ⊢ ( 𝑘  =  𝑖  →  ( 𝐵 ↑ 𝑘 )  =  ( 𝐵 ↑ 𝑖 ) ) | 
						
							| 34 | 33 | oveq1d | ⊢ ( 𝑘  =  𝑖  →  ( ( 𝐵 ↑ 𝑘 )  −  0 )  =  ( ( 𝐵 ↑ 𝑖 )  −  0 ) ) | 
						
							| 35 | 34 | fveq2d | ⊢ ( 𝑘  =  𝑖  →  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  =  ( abs ‘ ( ( 𝐵 ↑ 𝑖 )  −  0 ) ) ) | 
						
							| 36 | 35 | breq1d | ⊢ ( 𝑘  =  𝑖  →  ( ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸  ↔  ( abs ‘ ( ( 𝐵 ↑ 𝑖 )  −  0 ) )  <  𝐸 ) ) | 
						
							| 37 | 36 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( abs ‘ ( ( 𝐵 ↑ 𝑖 )  −  0 ) )  <  𝐸 ) | 
						
							| 38 | 32 37 | sylancom | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( abs ‘ ( ( 𝐵 ↑ 𝑖 )  −  0 ) )  <  𝐸 ) | 
						
							| 39 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝜑 ) | 
						
							| 40 | 39 5 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝐵  ∈  ℝ+ ) | 
						
							| 41 | 40 | rpred | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 42 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 43 |  | nnnn0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ0 ) | 
						
							| 44 | 42 43 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 45 |  | eluznn0 | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑖  ∈  ℕ0 ) | 
						
							| 46 | 44 45 | sylancom | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑖  ∈  ℕ0 ) | 
						
							| 47 | 41 46 | reexpcld | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( 𝐵 ↑ 𝑖 )  ∈  ℝ ) | 
						
							| 48 |  | rpre | ⊢ ( 𝐸  ∈  ℝ+  →  𝐸  ∈  ℝ ) | 
						
							| 49 | 39 7 48 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝐸  ∈  ℝ ) | 
						
							| 50 |  | recn | ⊢ ( ( 𝐵 ↑ 𝑖 )  ∈  ℝ  →  ( 𝐵 ↑ 𝑖 )  ∈  ℂ ) | 
						
							| 51 | 50 | subid1d | ⊢ ( ( 𝐵 ↑ 𝑖 )  ∈  ℝ  →  ( ( 𝐵 ↑ 𝑖 )  −  0 )  =  ( 𝐵 ↑ 𝑖 ) ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( ( 𝐵 ↑ 𝑖 )  ∈  ℝ  ∧  𝐸  ∈  ℝ )  →  ( ( 𝐵 ↑ 𝑖 )  −  0 )  =  ( 𝐵 ↑ 𝑖 ) ) | 
						
							| 53 | 52 | fveq2d | ⊢ ( ( ( 𝐵 ↑ 𝑖 )  ∈  ℝ  ∧  𝐸  ∈  ℝ )  →  ( abs ‘ ( ( 𝐵 ↑ 𝑖 )  −  0 ) )  =  ( abs ‘ ( 𝐵 ↑ 𝑖 ) ) ) | 
						
							| 54 | 53 | breq1d | ⊢ ( ( ( 𝐵 ↑ 𝑖 )  ∈  ℝ  ∧  𝐸  ∈  ℝ )  →  ( ( abs ‘ ( ( 𝐵 ↑ 𝑖 )  −  0 ) )  <  𝐸  ↔  ( abs ‘ ( 𝐵 ↑ 𝑖 ) )  <  𝐸 ) ) | 
						
							| 55 |  | abslt | ⊢ ( ( ( 𝐵 ↑ 𝑖 )  ∈  ℝ  ∧  𝐸  ∈  ℝ )  →  ( ( abs ‘ ( 𝐵 ↑ 𝑖 ) )  <  𝐸  ↔  ( - 𝐸  <  ( 𝐵 ↑ 𝑖 )  ∧  ( 𝐵 ↑ 𝑖 )  <  𝐸 ) ) ) | 
						
							| 56 | 54 55 | bitrd | ⊢ ( ( ( 𝐵 ↑ 𝑖 )  ∈  ℝ  ∧  𝐸  ∈  ℝ )  →  ( ( abs ‘ ( ( 𝐵 ↑ 𝑖 )  −  0 ) )  <  𝐸  ↔  ( - 𝐸  <  ( 𝐵 ↑ 𝑖 )  ∧  ( 𝐵 ↑ 𝑖 )  <  𝐸 ) ) ) | 
						
							| 57 | 47 49 56 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( abs ‘ ( ( 𝐵 ↑ 𝑖 )  −  0 ) )  <  𝐸  ↔  ( - 𝐸  <  ( 𝐵 ↑ 𝑖 )  ∧  ( 𝐵 ↑ 𝑖 )  <  𝐸 ) ) ) | 
						
							| 58 | 38 57 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( - 𝐸  <  ( 𝐵 ↑ 𝑖 )  ∧  ( 𝐵 ↑ 𝑖 )  <  𝐸 ) ) | 
						
							| 59 | 58 | simprd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( 𝐵 ↑ 𝑖 )  <  𝐸 ) | 
						
							| 60 |  | eluznn | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑖  ∈  ℕ ) | 
						
							| 61 | 42 60 | sylancom | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑖  ∈  ℕ ) | 
						
							| 62 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  𝐵  ∈  ℝ ) | 
						
							| 63 |  | nnnn0 | ⊢ ( 𝑖  ∈  ℕ  →  𝑖  ∈  ℕ0 ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  𝑖  ∈  ℕ0 ) | 
						
							| 65 | 62 64 | reexpcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝐵 ↑ 𝑖 )  ∈  ℝ ) | 
						
							| 66 | 7 | rpred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  𝐸  ∈  ℝ ) | 
						
							| 68 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  1  ∈  ℝ ) | 
						
							| 69 | 65 67 68 | ltsub2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝐵 ↑ 𝑖 )  <  𝐸  ↔  ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑖 ) ) ) ) | 
						
							| 70 | 39 61 69 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( 𝐵 ↑ 𝑖 )  <  𝐸  ↔  ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑖 ) ) ) ) | 
						
							| 71 | 59 70 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑖 ) ) ) | 
						
							| 72 | 71 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) )  →  ∀ 𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑖 ) ) ) | 
						
							| 73 | 33 | oveq2d | ⊢ ( 𝑘  =  𝑖  →  ( 1  −  ( 𝐵 ↑ 𝑘 ) )  =  ( 1  −  ( 𝐵 ↑ 𝑖 ) ) ) | 
						
							| 74 | 73 | breq2d | ⊢ ( 𝑘  =  𝑖  →  ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) )  ↔  ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑖 ) ) ) ) | 
						
							| 75 | 74 | cbvralvw | ⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) )  ↔  ∀ 𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑖 ) ) ) | 
						
							| 76 | 72 75 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) ) ) | 
						
							| 77 | 76 | ex | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) ) ) ) | 
						
							| 78 | 77 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐵 ↑ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐵 ↑ 𝑘 )  −  0 ) )  <  𝐸 )  →  ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) ) ) ) | 
						
							| 79 | 29 78 | mpd | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) ) ) | 
						
							| 80 |  | oveq2 | ⊢ ( 𝑖  =  𝑘  →  ( ( 1  /  𝐴 ) ↑ 𝑖 )  =  ( ( 1  /  𝐴 ) ↑ 𝑘 ) ) | 
						
							| 81 | 3 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 82 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 83 | 82 | a1i | ⊢ ( 𝜑  →  0  <  1 ) | 
						
							| 84 | 19 17 3 83 4 | lttrd | ⊢ ( 𝜑  →  0  <  𝐴 ) | 
						
							| 85 | 84 | gt0ne0d | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 86 | 81 85 | reccld | ⊢ ( 𝜑  →  ( 1  /  𝐴 )  ∈  ℂ ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 1  /  𝐴 )  ∈  ℂ ) | 
						
							| 88 | 87 12 | expcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 1  /  𝐴 ) ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 89 | 1 80 12 88 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  =  ( ( 1  /  𝐴 ) ↑ 𝑘 ) ) | 
						
							| 90 | 3 85 | rereccld | ⊢ ( 𝜑  →  ( 1  /  𝐴 )  ∈  ℝ ) | 
						
							| 91 | 3 84 | recgt0d | ⊢ ( 𝜑  →  0  <  ( 1  /  𝐴 ) ) | 
						
							| 92 | 18 19 90 22 91 | lttrd | ⊢ ( 𝜑  →  - 1  <  ( 1  /  𝐴 ) ) | 
						
							| 93 |  | ltdiv23 | ⊢ ( ( 1  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  ∈  ℝ  ∧  0  <  1 ) )  →  ( ( 1  /  𝐴 )  <  1  ↔  ( 1  /  1 )  <  𝐴 ) ) | 
						
							| 94 | 17 3 84 17 83 93 | syl122anc | ⊢ ( 𝜑  →  ( ( 1  /  𝐴 )  <  1  ↔  ( 1  /  1 )  <  𝐴 ) ) | 
						
							| 95 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 96 | 95 | div1d | ⊢ ( 𝜑  →  ( 1  /  1 )  =  1 ) | 
						
							| 97 | 96 | breq1d | ⊢ ( 𝜑  →  ( ( 1  /  1 )  <  𝐴  ↔  1  <  𝐴 ) ) | 
						
							| 98 | 94 97 | bitrd | ⊢ ( 𝜑  →  ( ( 1  /  𝐴 )  <  1  ↔  1  <  𝐴 ) ) | 
						
							| 99 | 4 98 | mpbird | ⊢ ( 𝜑  →  ( 1  /  𝐴 )  <  1 ) | 
						
							| 100 | 90 17 | absltd | ⊢ ( 𝜑  →  ( ( abs ‘ ( 1  /  𝐴 ) )  <  1  ↔  ( - 1  <  ( 1  /  𝐴 )  ∧  ( 1  /  𝐴 )  <  1 ) ) ) | 
						
							| 101 | 92 99 100 | mpbir2and | ⊢ ( 𝜑  →  ( abs ‘ ( 1  /  𝐴 ) )  <  1 ) | 
						
							| 102 | 86 101 | expcnv | ⊢ ( 𝜑  →  ( 𝑖  ∈  ℕ0  ↦  ( ( 1  /  𝐴 ) ↑ 𝑖 ) )  ⇝  0 ) | 
						
							| 103 | 1 102 | eqbrtrid | ⊢ ( 𝜑  →  𝐹  ⇝  0 ) | 
						
							| 104 | 8 9 7 89 103 | climi2 | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( ( ( 1  /  𝐴 ) ↑ 𝑘 )  −  0 ) )  <  𝐸 ) | 
						
							| 105 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝜑 ) | 
						
							| 106 |  | uznnssnn | ⊢ ( 𝑛  ∈  ℕ  →  ( ℤ≥ ‘ 𝑛 )  ⊆  ℕ ) | 
						
							| 107 | 106 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ℤ≥ ‘ 𝑛 )  ⊆  ℕ ) | 
						
							| 108 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 109 | 107 108 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 110 | 88 | subid1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( 1  /  𝐴 ) ↑ 𝑘 )  −  0 )  =  ( ( 1  /  𝐴 ) ↑ 𝑘 ) ) | 
						
							| 111 | 110 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( abs ‘ ( ( ( 1  /  𝐴 ) ↑ 𝑘 )  −  0 ) )  =  ( abs ‘ ( ( 1  /  𝐴 ) ↑ 𝑘 ) ) ) | 
						
							| 112 | 90 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 1  /  𝐴 )  ∈  ℝ ) | 
						
							| 113 | 112 12 | reexpcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 1  /  𝐴 ) ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 114 | 19 90 91 | ltled | ⊢ ( 𝜑  →  0  ≤  ( 1  /  𝐴 ) ) | 
						
							| 115 | 114 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  0  ≤  ( 1  /  𝐴 ) ) | 
						
							| 116 | 112 12 115 | expge0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  0  ≤  ( ( 1  /  𝐴 ) ↑ 𝑘 ) ) | 
						
							| 117 | 113 116 | absidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( abs ‘ ( ( 1  /  𝐴 ) ↑ 𝑘 ) )  =  ( ( 1  /  𝐴 ) ↑ 𝑘 ) ) | 
						
							| 118 | 111 117 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( abs ‘ ( ( ( 1  /  𝐴 ) ↑ 𝑘 )  −  0 ) )  =  ( ( 1  /  𝐴 ) ↑ 𝑘 ) ) | 
						
							| 119 | 118 | breq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( abs ‘ ( ( ( 1  /  𝐴 ) ↑ 𝑘 )  −  0 ) )  <  𝐸  ↔  ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸 ) ) | 
						
							| 120 | 119 | biimpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( abs ‘ ( ( ( 1  /  𝐴 ) ↑ 𝑘 )  −  0 ) )  <  𝐸  →  ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸 ) ) | 
						
							| 121 | 105 109 120 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( abs ‘ ( ( ( 1  /  𝐴 ) ↑ 𝑘 )  −  0 ) )  <  𝐸  →  ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸 ) ) | 
						
							| 122 | 121 | ralimdva | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( ( ( 1  /  𝐴 ) ↑ 𝑘 )  −  0 ) )  <  𝐸  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸 ) ) | 
						
							| 123 | 122 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( abs ‘ ( ( ( 1  /  𝐴 ) ↑ 𝑘 )  −  0 ) )  <  𝐸  →  ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸 ) ) | 
						
							| 124 | 104 123 | mpd | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸 ) | 
						
							| 125 | 8 | rexanuz2 | ⊢ ( ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) )  ∧  ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸 )  ↔  ( ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) )  ∧  ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸 ) ) | 
						
							| 126 | 79 124 125 | sylanbrc | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) )  ∧  ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸 ) ) | 
						
							| 127 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) )  ∧  ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸 ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) )  ∧  ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸 ) ) | 
						
							| 128 |  | nnz | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℤ ) | 
						
							| 129 |  | uzid | ⊢ ( 𝑛  ∈  ℤ  →  𝑛  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 130 | 128 129 | syl | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 131 | 130 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) )  ∧  ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸 ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 132 |  | oveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝐵 ↑ 𝑘 )  =  ( 𝐵 ↑ 𝑛 ) ) | 
						
							| 133 | 132 | oveq2d | ⊢ ( 𝑘  =  𝑛  →  ( 1  −  ( 𝐵 ↑ 𝑘 ) )  =  ( 1  −  ( 𝐵 ↑ 𝑛 ) ) ) | 
						
							| 134 | 133 | breq2d | ⊢ ( 𝑘  =  𝑛  →  ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) )  ↔  ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑛 ) ) ) ) | 
						
							| 135 |  | oveq2 | ⊢ ( 𝑘  =  𝑛  →  ( ( 1  /  𝐴 ) ↑ 𝑘 )  =  ( ( 1  /  𝐴 ) ↑ 𝑛 ) ) | 
						
							| 136 | 135 | breq1d | ⊢ ( 𝑘  =  𝑛  →  ( ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸  ↔  ( ( 1  /  𝐴 ) ↑ 𝑛 )  <  𝐸 ) ) | 
						
							| 137 | 134 136 | anbi12d | ⊢ ( 𝑘  =  𝑛  →  ( ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) )  ∧  ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸 )  ↔  ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑛 ) )  ∧  ( ( 1  /  𝐴 ) ↑ 𝑛 )  <  𝐸 ) ) ) | 
						
							| 138 | 137 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) )  ∧  ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑛 ) )  ∧  ( ( 1  /  𝐴 ) ↑ 𝑛 )  <  𝐸 ) ) | 
						
							| 139 | 127 131 138 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) )  ∧  ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸 ) )  →  ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑛 ) )  ∧  ( ( 1  /  𝐴 ) ↑ 𝑛 )  <  𝐸 ) ) | 
						
							| 140 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 141 | 81 85 | jca | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 ) ) | 
						
							| 142 | 141 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 ) ) | 
						
							| 143 | 43 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ0 ) | 
						
							| 144 |  | expdiv | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 1  /  𝐴 ) ↑ 𝑛 )  =  ( ( 1 ↑ 𝑛 )  /  ( 𝐴 ↑ 𝑛 ) ) ) | 
						
							| 145 | 140 142 143 144 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 1  /  𝐴 ) ↑ 𝑛 )  =  ( ( 1 ↑ 𝑛 )  /  ( 𝐴 ↑ 𝑛 ) ) ) | 
						
							| 146 | 128 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℤ ) | 
						
							| 147 |  | 1exp | ⊢ ( 𝑛  ∈  ℤ  →  ( 1 ↑ 𝑛 )  =  1 ) | 
						
							| 148 | 146 147 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1 ↑ 𝑛 )  =  1 ) | 
						
							| 149 | 148 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 1 ↑ 𝑛 )  /  ( 𝐴 ↑ 𝑛 ) )  =  ( 1  /  ( 𝐴 ↑ 𝑛 ) ) ) | 
						
							| 150 | 145 149 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 1  /  𝐴 ) ↑ 𝑛 )  =  ( 1  /  ( 𝐴 ↑ 𝑛 ) ) ) | 
						
							| 151 | 150 | breq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( 1  /  𝐴 ) ↑ 𝑛 )  <  𝐸  ↔  ( 1  /  ( 𝐴 ↑ 𝑛 ) )  <  𝐸 ) ) | 
						
							| 152 | 151 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) )  ∧  ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸 ) )  →  ( ( ( 1  /  𝐴 ) ↑ 𝑛 )  <  𝐸  ↔  ( 1  /  ( 𝐴 ↑ 𝑛 ) )  <  𝐸 ) ) | 
						
							| 153 | 152 | anbi2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) )  ∧  ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸 ) )  →  ( ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑛 ) )  ∧  ( ( 1  /  𝐴 ) ↑ 𝑛 )  <  𝐸 )  ↔  ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑛 ) )  ∧  ( 1  /  ( 𝐴 ↑ 𝑛 ) )  <  𝐸 ) ) ) | 
						
							| 154 | 139 153 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) )  ∧  ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸 ) )  →  ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑛 ) )  ∧  ( 1  /  ( 𝐴 ↑ 𝑛 ) )  <  𝐸 ) ) | 
						
							| 155 | 154 | ex | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) )  ∧  ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸 )  →  ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑛 ) )  ∧  ( 1  /  ( 𝐴 ↑ 𝑛 ) )  <  𝐸 ) ) ) | 
						
							| 156 | 155 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑘 ) )  ∧  ( ( 1  /  𝐴 ) ↑ 𝑘 )  <  𝐸 )  →  ∃ 𝑛  ∈  ℕ ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑛 ) )  ∧  ( 1  /  ( 𝐴 ↑ 𝑛 ) )  <  𝐸 ) ) ) | 
						
							| 157 | 126 156 | mpd | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ ( ( 1  −  𝐸 )  <  ( 1  −  ( 𝐵 ↑ 𝑛 ) )  ∧  ( 1  /  ( 𝐴 ↑ 𝑛 ) )  <  𝐸 ) ) |