| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							climi.1 | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 2 | 
							
								
							 | 
							climi.2 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 3 | 
							
								
							 | 
							climi.3 | 
							⊢ ( 𝜑  →  𝐶  ∈  ℝ+ )  | 
						
						
							| 4 | 
							
								
							 | 
							climi.4 | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐵 )  | 
						
						
							| 5 | 
							
								
							 | 
							climi.5 | 
							⊢ ( 𝜑  →  𝐹  ⇝  𝐴 )  | 
						
						
							| 6 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑥  =  𝐶  →  ( ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥  ↔  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝐶 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							anbi2d | 
							⊢ ( 𝑥  =  𝐶  →  ( ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 )  ↔  ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝐶 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							rexralbidv | 
							⊢ ( 𝑥  =  𝐶  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 )  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝐶 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							climrel | 
							⊢ Rel   ⇝   | 
						
						
							| 10 | 
							
								9
							 | 
							brrelex1i | 
							⊢ ( 𝐹  ⇝  𝐴  →  𝐹  ∈  V )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐹  ∈  V )  | 
						
						
							| 12 | 
							
								1 2 11 4
							 | 
							clim2 | 
							⊢ ( 𝜑  →  ( 𝐹  ⇝  𝐴  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 ) ) ) )  | 
						
						
							| 13 | 
							
								5 12
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							simprd | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 ) )  | 
						
						
							| 15 | 
							
								8 14 3
							 | 
							rspcdva | 
							⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝐶 ) )  |