Metamath Proof Explorer


Theorem climi

Description: Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses climi.1 Z=M
climi.2 φM
climi.3 φC+
climi.4 φkZFk=B
climi.5 φFA
Assertion climi φjZkjBBA<C

Proof

Step Hyp Ref Expression
1 climi.1 Z=M
2 climi.2 φM
3 climi.3 φC+
4 climi.4 φkZFk=B
5 climi.5 φFA
6 breq2 x=CBA<xBA<C
7 6 anbi2d x=CBBA<xBBA<C
8 7 rexralbidv x=CjZkjBBA<xjZkjBBA<C
9 climrel Rel
10 9 brrelex1i FAFV
11 5 10 syl φFV
12 1 2 11 4 clim2 φFAAx+jZkjBBA<x
13 5 12 mpbid φAx+jZkjBBA<x
14 13 simprd φx+jZkjBBA<x
15 8 14 3 rspcdva φjZkjBBA<C