| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem7.1 |
|- F = ( i e. NN0 |-> ( ( 1 / A ) ^ i ) ) |
| 2 |
|
stoweidlem7.2 |
|- G = ( i e. NN0 |-> ( B ^ i ) ) |
| 3 |
|
stoweidlem7.3 |
|- ( ph -> A e. RR ) |
| 4 |
|
stoweidlem7.4 |
|- ( ph -> 1 < A ) |
| 5 |
|
stoweidlem7.5 |
|- ( ph -> B e. RR+ ) |
| 6 |
|
stoweidlem7.6 |
|- ( ph -> B < 1 ) |
| 7 |
|
stoweidlem7.7 |
|- ( ph -> E e. RR+ ) |
| 8 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 9 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 10 |
|
oveq2 |
|- ( i = k -> ( B ^ i ) = ( B ^ k ) ) |
| 11 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ k e. NN ) -> k e. NN0 ) |
| 13 |
5
|
rpcnd |
|- ( ph -> B e. CC ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ k e. NN ) -> B e. CC ) |
| 15 |
14 12
|
expcld |
|- ( ( ph /\ k e. NN ) -> ( B ^ k ) e. CC ) |
| 16 |
2 10 12 15
|
fvmptd3 |
|- ( ( ph /\ k e. NN ) -> ( G ` k ) = ( B ^ k ) ) |
| 17 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 18 |
17
|
renegcld |
|- ( ph -> -u 1 e. RR ) |
| 19 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 20 |
5
|
rpred |
|- ( ph -> B e. RR ) |
| 21 |
|
neg1lt0 |
|- -u 1 < 0 |
| 22 |
21
|
a1i |
|- ( ph -> -u 1 < 0 ) |
| 23 |
5
|
rpgt0d |
|- ( ph -> 0 < B ) |
| 24 |
18 19 20 22 23
|
lttrd |
|- ( ph -> -u 1 < B ) |
| 25 |
20 17
|
absltd |
|- ( ph -> ( ( abs ` B ) < 1 <-> ( -u 1 < B /\ B < 1 ) ) ) |
| 26 |
24 6 25
|
mpbir2and |
|- ( ph -> ( abs ` B ) < 1 ) |
| 27 |
13 26
|
expcnv |
|- ( ph -> ( i e. NN0 |-> ( B ^ i ) ) ~~> 0 ) |
| 28 |
2 27
|
eqbrtrid |
|- ( ph -> G ~~> 0 ) |
| 29 |
8 9 7 16 28
|
climi |
|- ( ph -> E. n e. NN A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) ) |
| 30 |
|
r19.26 |
|- ( A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) <-> ( A. k e. ( ZZ>= ` n ) ( B ^ k ) e. CC /\ A. k e. ( ZZ>= ` n ) ( abs ` ( ( B ^ k ) - 0 ) ) < E ) ) |
| 31 |
30
|
simprbi |
|- ( A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) -> A. k e. ( ZZ>= ` n ) ( abs ` ( ( B ^ k ) - 0 ) ) < E ) |
| 32 |
31
|
ad2antlr |
|- ( ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) ) /\ i e. ( ZZ>= ` n ) ) -> A. k e. ( ZZ>= ` n ) ( abs ` ( ( B ^ k ) - 0 ) ) < E ) |
| 33 |
|
oveq2 |
|- ( k = i -> ( B ^ k ) = ( B ^ i ) ) |
| 34 |
33
|
oveq1d |
|- ( k = i -> ( ( B ^ k ) - 0 ) = ( ( B ^ i ) - 0 ) ) |
| 35 |
34
|
fveq2d |
|- ( k = i -> ( abs ` ( ( B ^ k ) - 0 ) ) = ( abs ` ( ( B ^ i ) - 0 ) ) ) |
| 36 |
35
|
breq1d |
|- ( k = i -> ( ( abs ` ( ( B ^ k ) - 0 ) ) < E <-> ( abs ` ( ( B ^ i ) - 0 ) ) < E ) ) |
| 37 |
36
|
rspccva |
|- ( ( A. k e. ( ZZ>= ` n ) ( abs ` ( ( B ^ k ) - 0 ) ) < E /\ i e. ( ZZ>= ` n ) ) -> ( abs ` ( ( B ^ i ) - 0 ) ) < E ) |
| 38 |
32 37
|
sylancom |
|- ( ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) ) /\ i e. ( ZZ>= ` n ) ) -> ( abs ` ( ( B ^ i ) - 0 ) ) < E ) |
| 39 |
|
simplll |
|- ( ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) ) /\ i e. ( ZZ>= ` n ) ) -> ph ) |
| 40 |
39 5
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) ) /\ i e. ( ZZ>= ` n ) ) -> B e. RR+ ) |
| 41 |
40
|
rpred |
|- ( ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) ) /\ i e. ( ZZ>= ` n ) ) -> B e. RR ) |
| 42 |
|
simpllr |
|- ( ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) ) /\ i e. ( ZZ>= ` n ) ) -> n e. NN ) |
| 43 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
| 44 |
42 43
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) ) /\ i e. ( ZZ>= ` n ) ) -> n e. NN0 ) |
| 45 |
|
eluznn0 |
|- ( ( n e. NN0 /\ i e. ( ZZ>= ` n ) ) -> i e. NN0 ) |
| 46 |
44 45
|
sylancom |
|- ( ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) ) /\ i e. ( ZZ>= ` n ) ) -> i e. NN0 ) |
| 47 |
41 46
|
reexpcld |
|- ( ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) ) /\ i e. ( ZZ>= ` n ) ) -> ( B ^ i ) e. RR ) |
| 48 |
|
rpre |
|- ( E e. RR+ -> E e. RR ) |
| 49 |
39 7 48
|
3syl |
|- ( ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) ) /\ i e. ( ZZ>= ` n ) ) -> E e. RR ) |
| 50 |
|
recn |
|- ( ( B ^ i ) e. RR -> ( B ^ i ) e. CC ) |
| 51 |
50
|
subid1d |
|- ( ( B ^ i ) e. RR -> ( ( B ^ i ) - 0 ) = ( B ^ i ) ) |
| 52 |
51
|
adantr |
|- ( ( ( B ^ i ) e. RR /\ E e. RR ) -> ( ( B ^ i ) - 0 ) = ( B ^ i ) ) |
| 53 |
52
|
fveq2d |
|- ( ( ( B ^ i ) e. RR /\ E e. RR ) -> ( abs ` ( ( B ^ i ) - 0 ) ) = ( abs ` ( B ^ i ) ) ) |
| 54 |
53
|
breq1d |
|- ( ( ( B ^ i ) e. RR /\ E e. RR ) -> ( ( abs ` ( ( B ^ i ) - 0 ) ) < E <-> ( abs ` ( B ^ i ) ) < E ) ) |
| 55 |
|
abslt |
|- ( ( ( B ^ i ) e. RR /\ E e. RR ) -> ( ( abs ` ( B ^ i ) ) < E <-> ( -u E < ( B ^ i ) /\ ( B ^ i ) < E ) ) ) |
| 56 |
54 55
|
bitrd |
|- ( ( ( B ^ i ) e. RR /\ E e. RR ) -> ( ( abs ` ( ( B ^ i ) - 0 ) ) < E <-> ( -u E < ( B ^ i ) /\ ( B ^ i ) < E ) ) ) |
| 57 |
47 49 56
|
syl2anc |
|- ( ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) ) /\ i e. ( ZZ>= ` n ) ) -> ( ( abs ` ( ( B ^ i ) - 0 ) ) < E <-> ( -u E < ( B ^ i ) /\ ( B ^ i ) < E ) ) ) |
| 58 |
38 57
|
mpbid |
|- ( ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) ) /\ i e. ( ZZ>= ` n ) ) -> ( -u E < ( B ^ i ) /\ ( B ^ i ) < E ) ) |
| 59 |
58
|
simprd |
|- ( ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) ) /\ i e. ( ZZ>= ` n ) ) -> ( B ^ i ) < E ) |
| 60 |
|
eluznn |
|- ( ( n e. NN /\ i e. ( ZZ>= ` n ) ) -> i e. NN ) |
| 61 |
42 60
|
sylancom |
|- ( ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) ) /\ i e. ( ZZ>= ` n ) ) -> i e. NN ) |
| 62 |
20
|
adantr |
|- ( ( ph /\ i e. NN ) -> B e. RR ) |
| 63 |
|
nnnn0 |
|- ( i e. NN -> i e. NN0 ) |
| 64 |
63
|
adantl |
|- ( ( ph /\ i e. NN ) -> i e. NN0 ) |
| 65 |
62 64
|
reexpcld |
|- ( ( ph /\ i e. NN ) -> ( B ^ i ) e. RR ) |
| 66 |
7
|
rpred |
|- ( ph -> E e. RR ) |
| 67 |
66
|
adantr |
|- ( ( ph /\ i e. NN ) -> E e. RR ) |
| 68 |
|
1red |
|- ( ( ph /\ i e. NN ) -> 1 e. RR ) |
| 69 |
65 67 68
|
ltsub2d |
|- ( ( ph /\ i e. NN ) -> ( ( B ^ i ) < E <-> ( 1 - E ) < ( 1 - ( B ^ i ) ) ) ) |
| 70 |
39 61 69
|
syl2anc |
|- ( ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) ) /\ i e. ( ZZ>= ` n ) ) -> ( ( B ^ i ) < E <-> ( 1 - E ) < ( 1 - ( B ^ i ) ) ) ) |
| 71 |
59 70
|
mpbid |
|- ( ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) ) /\ i e. ( ZZ>= ` n ) ) -> ( 1 - E ) < ( 1 - ( B ^ i ) ) ) |
| 72 |
71
|
ralrimiva |
|- ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) ) -> A. i e. ( ZZ>= ` n ) ( 1 - E ) < ( 1 - ( B ^ i ) ) ) |
| 73 |
33
|
oveq2d |
|- ( k = i -> ( 1 - ( B ^ k ) ) = ( 1 - ( B ^ i ) ) ) |
| 74 |
73
|
breq2d |
|- ( k = i -> ( ( 1 - E ) < ( 1 - ( B ^ k ) ) <-> ( 1 - E ) < ( 1 - ( B ^ i ) ) ) ) |
| 75 |
74
|
cbvralvw |
|- ( A. k e. ( ZZ>= ` n ) ( 1 - E ) < ( 1 - ( B ^ k ) ) <-> A. i e. ( ZZ>= ` n ) ( 1 - E ) < ( 1 - ( B ^ i ) ) ) |
| 76 |
72 75
|
sylibr |
|- ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) ) -> A. k e. ( ZZ>= ` n ) ( 1 - E ) < ( 1 - ( B ^ k ) ) ) |
| 77 |
76
|
ex |
|- ( ( ph /\ n e. NN ) -> ( A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) -> A. k e. ( ZZ>= ` n ) ( 1 - E ) < ( 1 - ( B ^ k ) ) ) ) |
| 78 |
77
|
reximdva |
|- ( ph -> ( E. n e. NN A. k e. ( ZZ>= ` n ) ( ( B ^ k ) e. CC /\ ( abs ` ( ( B ^ k ) - 0 ) ) < E ) -> E. n e. NN A. k e. ( ZZ>= ` n ) ( 1 - E ) < ( 1 - ( B ^ k ) ) ) ) |
| 79 |
29 78
|
mpd |
|- ( ph -> E. n e. NN A. k e. ( ZZ>= ` n ) ( 1 - E ) < ( 1 - ( B ^ k ) ) ) |
| 80 |
|
oveq2 |
|- ( i = k -> ( ( 1 / A ) ^ i ) = ( ( 1 / A ) ^ k ) ) |
| 81 |
3
|
recnd |
|- ( ph -> A e. CC ) |
| 82 |
|
0lt1 |
|- 0 < 1 |
| 83 |
82
|
a1i |
|- ( ph -> 0 < 1 ) |
| 84 |
19 17 3 83 4
|
lttrd |
|- ( ph -> 0 < A ) |
| 85 |
84
|
gt0ne0d |
|- ( ph -> A =/= 0 ) |
| 86 |
81 85
|
reccld |
|- ( ph -> ( 1 / A ) e. CC ) |
| 87 |
86
|
adantr |
|- ( ( ph /\ k e. NN ) -> ( 1 / A ) e. CC ) |
| 88 |
87 12
|
expcld |
|- ( ( ph /\ k e. NN ) -> ( ( 1 / A ) ^ k ) e. CC ) |
| 89 |
1 80 12 88
|
fvmptd3 |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) = ( ( 1 / A ) ^ k ) ) |
| 90 |
3 85
|
rereccld |
|- ( ph -> ( 1 / A ) e. RR ) |
| 91 |
3 84
|
recgt0d |
|- ( ph -> 0 < ( 1 / A ) ) |
| 92 |
18 19 90 22 91
|
lttrd |
|- ( ph -> -u 1 < ( 1 / A ) ) |
| 93 |
|
ltdiv23 |
|- ( ( 1 e. RR /\ ( A e. RR /\ 0 < A ) /\ ( 1 e. RR /\ 0 < 1 ) ) -> ( ( 1 / A ) < 1 <-> ( 1 / 1 ) < A ) ) |
| 94 |
17 3 84 17 83 93
|
syl122anc |
|- ( ph -> ( ( 1 / A ) < 1 <-> ( 1 / 1 ) < A ) ) |
| 95 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 96 |
95
|
div1d |
|- ( ph -> ( 1 / 1 ) = 1 ) |
| 97 |
96
|
breq1d |
|- ( ph -> ( ( 1 / 1 ) < A <-> 1 < A ) ) |
| 98 |
94 97
|
bitrd |
|- ( ph -> ( ( 1 / A ) < 1 <-> 1 < A ) ) |
| 99 |
4 98
|
mpbird |
|- ( ph -> ( 1 / A ) < 1 ) |
| 100 |
90 17
|
absltd |
|- ( ph -> ( ( abs ` ( 1 / A ) ) < 1 <-> ( -u 1 < ( 1 / A ) /\ ( 1 / A ) < 1 ) ) ) |
| 101 |
92 99 100
|
mpbir2and |
|- ( ph -> ( abs ` ( 1 / A ) ) < 1 ) |
| 102 |
86 101
|
expcnv |
|- ( ph -> ( i e. NN0 |-> ( ( 1 / A ) ^ i ) ) ~~> 0 ) |
| 103 |
1 102
|
eqbrtrid |
|- ( ph -> F ~~> 0 ) |
| 104 |
8 9 7 89 103
|
climi2 |
|- ( ph -> E. n e. NN A. k e. ( ZZ>= ` n ) ( abs ` ( ( ( 1 / A ) ^ k ) - 0 ) ) < E ) |
| 105 |
|
simpll |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ZZ>= ` n ) ) -> ph ) |
| 106 |
|
uznnssnn |
|- ( n e. NN -> ( ZZ>= ` n ) C_ NN ) |
| 107 |
106
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ZZ>= ` n ) ) -> ( ZZ>= ` n ) C_ NN ) |
| 108 |
|
simpr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ZZ>= ` n ) ) -> k e. ( ZZ>= ` n ) ) |
| 109 |
107 108
|
sseldd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ZZ>= ` n ) ) -> k e. NN ) |
| 110 |
88
|
subid1d |
|- ( ( ph /\ k e. NN ) -> ( ( ( 1 / A ) ^ k ) - 0 ) = ( ( 1 / A ) ^ k ) ) |
| 111 |
110
|
fveq2d |
|- ( ( ph /\ k e. NN ) -> ( abs ` ( ( ( 1 / A ) ^ k ) - 0 ) ) = ( abs ` ( ( 1 / A ) ^ k ) ) ) |
| 112 |
90
|
adantr |
|- ( ( ph /\ k e. NN ) -> ( 1 / A ) e. RR ) |
| 113 |
112 12
|
reexpcld |
|- ( ( ph /\ k e. NN ) -> ( ( 1 / A ) ^ k ) e. RR ) |
| 114 |
19 90 91
|
ltled |
|- ( ph -> 0 <_ ( 1 / A ) ) |
| 115 |
114
|
adantr |
|- ( ( ph /\ k e. NN ) -> 0 <_ ( 1 / A ) ) |
| 116 |
112 12 115
|
expge0d |
|- ( ( ph /\ k e. NN ) -> 0 <_ ( ( 1 / A ) ^ k ) ) |
| 117 |
113 116
|
absidd |
|- ( ( ph /\ k e. NN ) -> ( abs ` ( ( 1 / A ) ^ k ) ) = ( ( 1 / A ) ^ k ) ) |
| 118 |
111 117
|
eqtrd |
|- ( ( ph /\ k e. NN ) -> ( abs ` ( ( ( 1 / A ) ^ k ) - 0 ) ) = ( ( 1 / A ) ^ k ) ) |
| 119 |
118
|
breq1d |
|- ( ( ph /\ k e. NN ) -> ( ( abs ` ( ( ( 1 / A ) ^ k ) - 0 ) ) < E <-> ( ( 1 / A ) ^ k ) < E ) ) |
| 120 |
119
|
biimpd |
|- ( ( ph /\ k e. NN ) -> ( ( abs ` ( ( ( 1 / A ) ^ k ) - 0 ) ) < E -> ( ( 1 / A ) ^ k ) < E ) ) |
| 121 |
105 109 120
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ZZ>= ` n ) ) -> ( ( abs ` ( ( ( 1 / A ) ^ k ) - 0 ) ) < E -> ( ( 1 / A ) ^ k ) < E ) ) |
| 122 |
121
|
ralimdva |
|- ( ( ph /\ n e. NN ) -> ( A. k e. ( ZZ>= ` n ) ( abs ` ( ( ( 1 / A ) ^ k ) - 0 ) ) < E -> A. k e. ( ZZ>= ` n ) ( ( 1 / A ) ^ k ) < E ) ) |
| 123 |
122
|
reximdva |
|- ( ph -> ( E. n e. NN A. k e. ( ZZ>= ` n ) ( abs ` ( ( ( 1 / A ) ^ k ) - 0 ) ) < E -> E. n e. NN A. k e. ( ZZ>= ` n ) ( ( 1 / A ) ^ k ) < E ) ) |
| 124 |
104 123
|
mpd |
|- ( ph -> E. n e. NN A. k e. ( ZZ>= ` n ) ( ( 1 / A ) ^ k ) < E ) |
| 125 |
8
|
rexanuz2 |
|- ( E. n e. NN A. k e. ( ZZ>= ` n ) ( ( 1 - E ) < ( 1 - ( B ^ k ) ) /\ ( ( 1 / A ) ^ k ) < E ) <-> ( E. n e. NN A. k e. ( ZZ>= ` n ) ( 1 - E ) < ( 1 - ( B ^ k ) ) /\ E. n e. NN A. k e. ( ZZ>= ` n ) ( ( 1 / A ) ^ k ) < E ) ) |
| 126 |
79 124 125
|
sylanbrc |
|- ( ph -> E. n e. NN A. k e. ( ZZ>= ` n ) ( ( 1 - E ) < ( 1 - ( B ^ k ) ) /\ ( ( 1 / A ) ^ k ) < E ) ) |
| 127 |
|
simpr |
|- ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( 1 - E ) < ( 1 - ( B ^ k ) ) /\ ( ( 1 / A ) ^ k ) < E ) ) -> A. k e. ( ZZ>= ` n ) ( ( 1 - E ) < ( 1 - ( B ^ k ) ) /\ ( ( 1 / A ) ^ k ) < E ) ) |
| 128 |
|
nnz |
|- ( n e. NN -> n e. ZZ ) |
| 129 |
|
uzid |
|- ( n e. ZZ -> n e. ( ZZ>= ` n ) ) |
| 130 |
128 129
|
syl |
|- ( n e. NN -> n e. ( ZZ>= ` n ) ) |
| 131 |
130
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( 1 - E ) < ( 1 - ( B ^ k ) ) /\ ( ( 1 / A ) ^ k ) < E ) ) -> n e. ( ZZ>= ` n ) ) |
| 132 |
|
oveq2 |
|- ( k = n -> ( B ^ k ) = ( B ^ n ) ) |
| 133 |
132
|
oveq2d |
|- ( k = n -> ( 1 - ( B ^ k ) ) = ( 1 - ( B ^ n ) ) ) |
| 134 |
133
|
breq2d |
|- ( k = n -> ( ( 1 - E ) < ( 1 - ( B ^ k ) ) <-> ( 1 - E ) < ( 1 - ( B ^ n ) ) ) ) |
| 135 |
|
oveq2 |
|- ( k = n -> ( ( 1 / A ) ^ k ) = ( ( 1 / A ) ^ n ) ) |
| 136 |
135
|
breq1d |
|- ( k = n -> ( ( ( 1 / A ) ^ k ) < E <-> ( ( 1 / A ) ^ n ) < E ) ) |
| 137 |
134 136
|
anbi12d |
|- ( k = n -> ( ( ( 1 - E ) < ( 1 - ( B ^ k ) ) /\ ( ( 1 / A ) ^ k ) < E ) <-> ( ( 1 - E ) < ( 1 - ( B ^ n ) ) /\ ( ( 1 / A ) ^ n ) < E ) ) ) |
| 138 |
137
|
rspccva |
|- ( ( A. k e. ( ZZ>= ` n ) ( ( 1 - E ) < ( 1 - ( B ^ k ) ) /\ ( ( 1 / A ) ^ k ) < E ) /\ n e. ( ZZ>= ` n ) ) -> ( ( 1 - E ) < ( 1 - ( B ^ n ) ) /\ ( ( 1 / A ) ^ n ) < E ) ) |
| 139 |
127 131 138
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( 1 - E ) < ( 1 - ( B ^ k ) ) /\ ( ( 1 / A ) ^ k ) < E ) ) -> ( ( 1 - E ) < ( 1 - ( B ^ n ) ) /\ ( ( 1 / A ) ^ n ) < E ) ) |
| 140 |
|
1cnd |
|- ( ( ph /\ n e. NN ) -> 1 e. CC ) |
| 141 |
81 85
|
jca |
|- ( ph -> ( A e. CC /\ A =/= 0 ) ) |
| 142 |
141
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( A e. CC /\ A =/= 0 ) ) |
| 143 |
43
|
adantl |
|- ( ( ph /\ n e. NN ) -> n e. NN0 ) |
| 144 |
|
expdiv |
|- ( ( 1 e. CC /\ ( A e. CC /\ A =/= 0 ) /\ n e. NN0 ) -> ( ( 1 / A ) ^ n ) = ( ( 1 ^ n ) / ( A ^ n ) ) ) |
| 145 |
140 142 143 144
|
syl3anc |
|- ( ( ph /\ n e. NN ) -> ( ( 1 / A ) ^ n ) = ( ( 1 ^ n ) / ( A ^ n ) ) ) |
| 146 |
128
|
adantl |
|- ( ( ph /\ n e. NN ) -> n e. ZZ ) |
| 147 |
|
1exp |
|- ( n e. ZZ -> ( 1 ^ n ) = 1 ) |
| 148 |
146 147
|
syl |
|- ( ( ph /\ n e. NN ) -> ( 1 ^ n ) = 1 ) |
| 149 |
148
|
oveq1d |
|- ( ( ph /\ n e. NN ) -> ( ( 1 ^ n ) / ( A ^ n ) ) = ( 1 / ( A ^ n ) ) ) |
| 150 |
145 149
|
eqtrd |
|- ( ( ph /\ n e. NN ) -> ( ( 1 / A ) ^ n ) = ( 1 / ( A ^ n ) ) ) |
| 151 |
150
|
breq1d |
|- ( ( ph /\ n e. NN ) -> ( ( ( 1 / A ) ^ n ) < E <-> ( 1 / ( A ^ n ) ) < E ) ) |
| 152 |
151
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( 1 - E ) < ( 1 - ( B ^ k ) ) /\ ( ( 1 / A ) ^ k ) < E ) ) -> ( ( ( 1 / A ) ^ n ) < E <-> ( 1 / ( A ^ n ) ) < E ) ) |
| 153 |
152
|
anbi2d |
|- ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( 1 - E ) < ( 1 - ( B ^ k ) ) /\ ( ( 1 / A ) ^ k ) < E ) ) -> ( ( ( 1 - E ) < ( 1 - ( B ^ n ) ) /\ ( ( 1 / A ) ^ n ) < E ) <-> ( ( 1 - E ) < ( 1 - ( B ^ n ) ) /\ ( 1 / ( A ^ n ) ) < E ) ) ) |
| 154 |
139 153
|
mpbid |
|- ( ( ( ph /\ n e. NN ) /\ A. k e. ( ZZ>= ` n ) ( ( 1 - E ) < ( 1 - ( B ^ k ) ) /\ ( ( 1 / A ) ^ k ) < E ) ) -> ( ( 1 - E ) < ( 1 - ( B ^ n ) ) /\ ( 1 / ( A ^ n ) ) < E ) ) |
| 155 |
154
|
ex |
|- ( ( ph /\ n e. NN ) -> ( A. k e. ( ZZ>= ` n ) ( ( 1 - E ) < ( 1 - ( B ^ k ) ) /\ ( ( 1 / A ) ^ k ) < E ) -> ( ( 1 - E ) < ( 1 - ( B ^ n ) ) /\ ( 1 / ( A ^ n ) ) < E ) ) ) |
| 156 |
155
|
reximdva |
|- ( ph -> ( E. n e. NN A. k e. ( ZZ>= ` n ) ( ( 1 - E ) < ( 1 - ( B ^ k ) ) /\ ( ( 1 / A ) ^ k ) < E ) -> E. n e. NN ( ( 1 - E ) < ( 1 - ( B ^ n ) ) /\ ( 1 / ( A ^ n ) ) < E ) ) ) |
| 157 |
126 156
|
mpd |
|- ( ph -> E. n e. NN ( ( 1 - E ) < ( 1 - ( B ^ n ) ) /\ ( 1 / ( A ^ n ) ) < E ) ) |