Description: -1 is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | neg1lt0 | |- -u 1 < 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg0 | |- -u 0 = 0 |
|
2 | 0lt1 | |- 0 < 1 |
|
3 | 1 2 | eqbrtri | |- -u 0 < 1 |
4 | 1re | |- 1 e. RR |
|
5 | 0re | |- 0 e. RR |
|
6 | 4 5 | ltnegcon1i | |- ( -u 1 < 0 <-> -u 0 < 1 ) |
7 | 3 6 | mpbir | |- -u 1 < 0 |