Description: -1 is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | neg1lt0 | ⊢ - 1 < 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg0 | ⊢ - 0 = 0 | |
| 2 | 0lt1 | ⊢ 0 < 1 | |
| 3 | 1 2 | eqbrtri | ⊢ - 0 < 1 |
| 4 | 1re | ⊢ 1 ∈ ℝ | |
| 5 | 0re | ⊢ 0 ∈ ℝ | |
| 6 | 4 5 | ltnegcon1i | ⊢ ( - 1 < 0 ↔ - 0 < 1 ) |
| 7 | 3 6 | mpbir | ⊢ - 1 < 0 |