Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem8.1 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
2 |
|
stoweidlem8.2 |
|- F/_ t F |
3 |
|
stoweidlem8.3 |
|- F/_ t G |
4 |
|
simp3 |
|- ( ( ph /\ F e. A /\ G e. A ) -> G e. A ) |
5 |
|
eleq1 |
|- ( g = G -> ( g e. A <-> G e. A ) ) |
6 |
5
|
3anbi3d |
|- ( g = G -> ( ( ph /\ F e. A /\ g e. A ) <-> ( ph /\ F e. A /\ G e. A ) ) ) |
7 |
3
|
nfeq2 |
|- F/ t g = G |
8 |
|
fveq1 |
|- ( g = G -> ( g ` t ) = ( G ` t ) ) |
9 |
8
|
oveq2d |
|- ( g = G -> ( ( F ` t ) + ( g ` t ) ) = ( ( F ` t ) + ( G ` t ) ) ) |
10 |
9
|
adantr |
|- ( ( g = G /\ t e. T ) -> ( ( F ` t ) + ( g ` t ) ) = ( ( F ` t ) + ( G ` t ) ) ) |
11 |
7 10
|
mpteq2da |
|- ( g = G -> ( t e. T |-> ( ( F ` t ) + ( g ` t ) ) ) = ( t e. T |-> ( ( F ` t ) + ( G ` t ) ) ) ) |
12 |
11
|
eleq1d |
|- ( g = G -> ( ( t e. T |-> ( ( F ` t ) + ( g ` t ) ) ) e. A <-> ( t e. T |-> ( ( F ` t ) + ( G ` t ) ) ) e. A ) ) |
13 |
6 12
|
imbi12d |
|- ( g = G -> ( ( ( ph /\ F e. A /\ g e. A ) -> ( t e. T |-> ( ( F ` t ) + ( g ` t ) ) ) e. A ) <-> ( ( ph /\ F e. A /\ G e. A ) -> ( t e. T |-> ( ( F ` t ) + ( G ` t ) ) ) e. A ) ) ) |
14 |
|
simp2 |
|- ( ( ph /\ F e. A /\ g e. A ) -> F e. A ) |
15 |
|
eleq1 |
|- ( f = F -> ( f e. A <-> F e. A ) ) |
16 |
15
|
3anbi2d |
|- ( f = F -> ( ( ph /\ f e. A /\ g e. A ) <-> ( ph /\ F e. A /\ g e. A ) ) ) |
17 |
2
|
nfeq2 |
|- F/ t f = F |
18 |
|
fveq1 |
|- ( f = F -> ( f ` t ) = ( F ` t ) ) |
19 |
18
|
oveq1d |
|- ( f = F -> ( ( f ` t ) + ( g ` t ) ) = ( ( F ` t ) + ( g ` t ) ) ) |
20 |
19
|
adantr |
|- ( ( f = F /\ t e. T ) -> ( ( f ` t ) + ( g ` t ) ) = ( ( F ` t ) + ( g ` t ) ) ) |
21 |
17 20
|
mpteq2da |
|- ( f = F -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) = ( t e. T |-> ( ( F ` t ) + ( g ` t ) ) ) ) |
22 |
21
|
eleq1d |
|- ( f = F -> ( ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A <-> ( t e. T |-> ( ( F ` t ) + ( g ` t ) ) ) e. A ) ) |
23 |
16 22
|
imbi12d |
|- ( f = F -> ( ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) <-> ( ( ph /\ F e. A /\ g e. A ) -> ( t e. T |-> ( ( F ` t ) + ( g ` t ) ) ) e. A ) ) ) |
24 |
23 1
|
vtoclg |
|- ( F e. A -> ( ( ph /\ F e. A /\ g e. A ) -> ( t e. T |-> ( ( F ` t ) + ( g ` t ) ) ) e. A ) ) |
25 |
14 24
|
mpcom |
|- ( ( ph /\ F e. A /\ g e. A ) -> ( t e. T |-> ( ( F ` t ) + ( g ` t ) ) ) e. A ) |
26 |
13 25
|
vtoclg |
|- ( G e. A -> ( ( ph /\ F e. A /\ G e. A ) -> ( t e. T |-> ( ( F ` t ) + ( G ` t ) ) ) e. A ) ) |
27 |
4 26
|
mpcom |
|- ( ( ph /\ F e. A /\ G e. A ) -> ( t e. T |-> ( ( F ` t ) + ( G ` t ) ) ) e. A ) |