Metamath Proof Explorer


Theorem stoweidlem8

Description: Lemma for stoweid : two class variables replace two setvar variables, for the sum of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem8.1 φfAgAtTft+gtA
stoweidlem8.2 _tF
stoweidlem8.3 _tG
Assertion stoweidlem8 φFAGAtTFt+GtA

Proof

Step Hyp Ref Expression
1 stoweidlem8.1 φfAgAtTft+gtA
2 stoweidlem8.2 _tF
3 stoweidlem8.3 _tG
4 simp3 φFAGAGA
5 eleq1 g=GgAGA
6 5 3anbi3d g=GφFAgAφFAGA
7 3 nfeq2 tg=G
8 fveq1 g=Ggt=Gt
9 8 oveq2d g=GFt+gt=Ft+Gt
10 9 adantr g=GtTFt+gt=Ft+Gt
11 7 10 mpteq2da g=GtTFt+gt=tTFt+Gt
12 11 eleq1d g=GtTFt+gtAtTFt+GtA
13 6 12 imbi12d g=GφFAgAtTFt+gtAφFAGAtTFt+GtA
14 simp2 φFAgAFA
15 eleq1 f=FfAFA
16 15 3anbi2d f=FφfAgAφFAgA
17 2 nfeq2 tf=F
18 fveq1 f=Fft=Ft
19 18 oveq1d f=Fft+gt=Ft+gt
20 19 adantr f=FtTft+gt=Ft+gt
21 17 20 mpteq2da f=FtTft+gt=tTFt+gt
22 21 eleq1d f=FtTft+gtAtTFt+gtA
23 16 22 imbi12d f=FφfAgAtTft+gtAφFAgAtTFt+gtA
24 23 1 vtoclg FAφFAgAtTFt+gtA
25 14 24 mpcom φFAgAtTFt+gtA
26 13 25 vtoclg GAφFAGAtTFt+GtA
27 4 26 mpcom φFAGAtTFt+GtA