Metamath Proof Explorer


Theorem stoweidlem7

Description: This lemma is used to prove that q_n as in the proof of Lemma 1 in BrosowskiDeutsh p. 91, (at the top of page 91), is such that q_n < ε on T \ U , and q_n > 1 - ε on V . Here it is proven that, for n large enough, 1-(k*δ/2)^n > 1 - ε , and 1/(k*δ)^n < ε. The variable A is used to represent (k*δ) in the paper, and B is used to represent (k*δ/2). (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem7.1 F=i01Ai
stoweidlem7.2 G=i0Bi
stoweidlem7.3 φA
stoweidlem7.4 φ1<A
stoweidlem7.5 φB+
stoweidlem7.6 φB<1
stoweidlem7.7 φE+
Assertion stoweidlem7 φn1E<1Bn1An<E

Proof

Step Hyp Ref Expression
1 stoweidlem7.1 F=i01Ai
2 stoweidlem7.2 G=i0Bi
3 stoweidlem7.3 φA
4 stoweidlem7.4 φ1<A
5 stoweidlem7.5 φB+
6 stoweidlem7.6 φB<1
7 stoweidlem7.7 φE+
8 nnuz =1
9 1zzd φ1
10 oveq2 i=kBi=Bk
11 nnnn0 kk0
12 11 adantl φkk0
13 5 rpcnd φB
14 13 adantr φkB
15 14 12 expcld φkBk
16 2 10 12 15 fvmptd3 φkGk=Bk
17 1red φ1
18 17 renegcld φ1
19 0red φ0
20 5 rpred φB
21 neg1lt0 1<0
22 21 a1i φ1<0
23 5 rpgt0d φ0<B
24 18 19 20 22 23 lttrd φ1<B
25 20 17 absltd φB<11<BB<1
26 24 6 25 mpbir2and φB<1
27 13 26 expcnv φi0Bi0
28 2 27 eqbrtrid φG0
29 8 9 7 16 28 climi φnknBkBk0<E
30 r19.26 knBkBk0<EknBkknBk0<E
31 30 simprbi knBkBk0<EknBk0<E
32 31 ad2antlr φnknBkBk0<EinknBk0<E
33 oveq2 k=iBk=Bi
34 33 oveq1d k=iBk0=Bi0
35 34 fveq2d k=iBk0=Bi0
36 35 breq1d k=iBk0<EBi0<E
37 36 rspccva knBk0<EinBi0<E
38 32 37 sylancom φnknBkBk0<EinBi0<E
39 simplll φnknBkBk0<Einφ
40 39 5 syl φnknBkBk0<EinB+
41 40 rpred φnknBkBk0<EinB
42 simpllr φnknBkBk0<Einn
43 nnnn0 nn0
44 42 43 syl φnknBkBk0<Einn0
45 eluznn0 n0ini0
46 44 45 sylancom φnknBkBk0<Eini0
47 41 46 reexpcld φnknBkBk0<EinBi
48 rpre E+E
49 39 7 48 3syl φnknBkBk0<EinE
50 recn BiBi
51 50 subid1d BiBi0=Bi
52 51 adantr BiEBi0=Bi
53 52 fveq2d BiEBi0=Bi
54 53 breq1d BiEBi0<EBi<E
55 abslt BiEBi<EE<BiBi<E
56 54 55 bitrd BiEBi0<EE<BiBi<E
57 47 49 56 syl2anc φnknBkBk0<EinBi0<EE<BiBi<E
58 38 57 mpbid φnknBkBk0<EinE<BiBi<E
59 58 simprd φnknBkBk0<EinBi<E
60 eluznn nini
61 42 60 sylancom φnknBkBk0<Eini
62 20 adantr φiB
63 nnnn0 ii0
64 63 adantl φii0
65 62 64 reexpcld φiBi
66 7 rpred φE
67 66 adantr φiE
68 1red φi1
69 65 67 68 ltsub2d φiBi<E1E<1Bi
70 39 61 69 syl2anc φnknBkBk0<EinBi<E1E<1Bi
71 59 70 mpbid φnknBkBk0<Ein1E<1Bi
72 71 ralrimiva φnknBkBk0<Ein1E<1Bi
73 33 oveq2d k=i1Bk=1Bi
74 73 breq2d k=i1E<1Bk1E<1Bi
75 74 cbvralvw kn1E<1Bkin1E<1Bi
76 72 75 sylibr φnknBkBk0<Ekn1E<1Bk
77 76 ex φnknBkBk0<Ekn1E<1Bk
78 77 reximdva φnknBkBk0<Enkn1E<1Bk
79 29 78 mpd φnkn1E<1Bk
80 oveq2 i=k1Ai=1Ak
81 3 recnd φA
82 0lt1 0<1
83 82 a1i φ0<1
84 19 17 3 83 4 lttrd φ0<A
85 84 gt0ne0d φA0
86 81 85 reccld φ1A
87 86 adantr φk1A
88 87 12 expcld φk1Ak
89 1 80 12 88 fvmptd3 φkFk=1Ak
90 3 85 rereccld φ1A
91 3 84 recgt0d φ0<1A
92 18 19 90 22 91 lttrd φ1<1A
93 ltdiv23 1A0<A10<11A<111<A
94 17 3 84 17 83 93 syl122anc φ1A<111<A
95 1cnd φ1
96 95 div1d φ11=1
97 96 breq1d φ11<A1<A
98 94 97 bitrd φ1A<11<A
99 4 98 mpbird φ1A<1
100 90 17 absltd φ1A<11<1A1A<1
101 92 99 100 mpbir2and φ1A<1
102 86 101 expcnv φi01Ai0
103 1 102 eqbrtrid φF0
104 8 9 7 89 103 climi2 φnkn1Ak0<E
105 simpll φnknφ
106 uznnssnn nn
107 106 ad2antlr φnknn
108 simpr φnknkn
109 107 108 sseldd φnknk
110 88 subid1d φk1Ak0=1Ak
111 110 fveq2d φk1Ak0=1Ak
112 90 adantr φk1A
113 112 12 reexpcld φk1Ak
114 19 90 91 ltled φ01A
115 114 adantr φk01A
116 112 12 115 expge0d φk01Ak
117 113 116 absidd φk1Ak=1Ak
118 111 117 eqtrd φk1Ak0=1Ak
119 118 breq1d φk1Ak0<E1Ak<E
120 119 biimpd φk1Ak0<E1Ak<E
121 105 109 120 syl2anc φnkn1Ak0<E1Ak<E
122 121 ralimdva φnkn1Ak0<Ekn1Ak<E
123 122 reximdva φnkn1Ak0<Enkn1Ak<E
124 104 123 mpd φnkn1Ak<E
125 8 rexanuz2 nkn1E<1Bk1Ak<Enkn1E<1Bknkn1Ak<E
126 79 124 125 sylanbrc φnkn1E<1Bk1Ak<E
127 simpr φnkn1E<1Bk1Ak<Ekn1E<1Bk1Ak<E
128 nnz nn
129 uzid nnn
130 128 129 syl nnn
131 130 ad2antlr φnkn1E<1Bk1Ak<Enn
132 oveq2 k=nBk=Bn
133 132 oveq2d k=n1Bk=1Bn
134 133 breq2d k=n1E<1Bk1E<1Bn
135 oveq2 k=n1Ak=1An
136 135 breq1d k=n1Ak<E1An<E
137 134 136 anbi12d k=n1E<1Bk1Ak<E1E<1Bn1An<E
138 137 rspccva kn1E<1Bk1Ak<Enn1E<1Bn1An<E
139 127 131 138 syl2anc φnkn1E<1Bk1Ak<E1E<1Bn1An<E
140 1cnd φn1
141 81 85 jca φAA0
142 141 adantr φnAA0
143 43 adantl φnn0
144 expdiv 1AA0n01An=1nAn
145 140 142 143 144 syl3anc φn1An=1nAn
146 128 adantl φnn
147 1exp n1n=1
148 146 147 syl φn1n=1
149 148 oveq1d φn1nAn=1An
150 145 149 eqtrd φn1An=1An
151 150 breq1d φn1An<E1An<E
152 151 adantr φnkn1E<1Bk1Ak<E1An<E1An<E
153 152 anbi2d φnkn1E<1Bk1Ak<E1E<1Bn1An<E1E<1Bn1An<E
154 139 153 mpbid φnkn1E<1Bk1Ak<E1E<1Bn1An<E
155 154 ex φnkn1E<1Bk1Ak<E1E<1Bn1An<E
156 155 reximdva φnkn1E<1Bk1Ak<En1E<1Bn1An<E
157 126 156 mpd φn1E<1Bn1An<E