| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem7.1 |
|
| 2 |
|
stoweidlem7.2 |
|
| 3 |
|
stoweidlem7.3 |
|
| 4 |
|
stoweidlem7.4 |
|
| 5 |
|
stoweidlem7.5 |
|
| 6 |
|
stoweidlem7.6 |
|
| 7 |
|
stoweidlem7.7 |
|
| 8 |
|
nnuz |
|
| 9 |
|
1zzd |
|
| 10 |
|
oveq2 |
|
| 11 |
|
nnnn0 |
|
| 12 |
11
|
adantl |
|
| 13 |
5
|
rpcnd |
|
| 14 |
13
|
adantr |
|
| 15 |
14 12
|
expcld |
|
| 16 |
2 10 12 15
|
fvmptd3 |
|
| 17 |
|
1red |
|
| 18 |
17
|
renegcld |
|
| 19 |
|
0red |
|
| 20 |
5
|
rpred |
|
| 21 |
|
neg1lt0 |
|
| 22 |
21
|
a1i |
|
| 23 |
5
|
rpgt0d |
|
| 24 |
18 19 20 22 23
|
lttrd |
|
| 25 |
20 17
|
absltd |
|
| 26 |
24 6 25
|
mpbir2and |
|
| 27 |
13 26
|
expcnv |
|
| 28 |
2 27
|
eqbrtrid |
|
| 29 |
8 9 7 16 28
|
climi |
|
| 30 |
|
r19.26 |
|
| 31 |
30
|
simprbi |
|
| 32 |
31
|
ad2antlr |
|
| 33 |
|
oveq2 |
|
| 34 |
33
|
oveq1d |
|
| 35 |
34
|
fveq2d |
|
| 36 |
35
|
breq1d |
|
| 37 |
36
|
rspccva |
|
| 38 |
32 37
|
sylancom |
|
| 39 |
|
simplll |
|
| 40 |
39 5
|
syl |
|
| 41 |
40
|
rpred |
|
| 42 |
|
simpllr |
|
| 43 |
|
nnnn0 |
|
| 44 |
42 43
|
syl |
|
| 45 |
|
eluznn0 |
|
| 46 |
44 45
|
sylancom |
|
| 47 |
41 46
|
reexpcld |
|
| 48 |
|
rpre |
|
| 49 |
39 7 48
|
3syl |
|
| 50 |
|
recn |
|
| 51 |
50
|
subid1d |
|
| 52 |
51
|
adantr |
|
| 53 |
52
|
fveq2d |
|
| 54 |
53
|
breq1d |
|
| 55 |
|
abslt |
|
| 56 |
54 55
|
bitrd |
|
| 57 |
47 49 56
|
syl2anc |
|
| 58 |
38 57
|
mpbid |
|
| 59 |
58
|
simprd |
|
| 60 |
|
eluznn |
|
| 61 |
42 60
|
sylancom |
|
| 62 |
20
|
adantr |
|
| 63 |
|
nnnn0 |
|
| 64 |
63
|
adantl |
|
| 65 |
62 64
|
reexpcld |
|
| 66 |
7
|
rpred |
|
| 67 |
66
|
adantr |
|
| 68 |
|
1red |
|
| 69 |
65 67 68
|
ltsub2d |
|
| 70 |
39 61 69
|
syl2anc |
|
| 71 |
59 70
|
mpbid |
|
| 72 |
71
|
ralrimiva |
|
| 73 |
33
|
oveq2d |
|
| 74 |
73
|
breq2d |
|
| 75 |
74
|
cbvralvw |
|
| 76 |
72 75
|
sylibr |
|
| 77 |
76
|
ex |
|
| 78 |
77
|
reximdva |
|
| 79 |
29 78
|
mpd |
|
| 80 |
|
oveq2 |
|
| 81 |
3
|
recnd |
|
| 82 |
|
0lt1 |
|
| 83 |
82
|
a1i |
|
| 84 |
19 17 3 83 4
|
lttrd |
|
| 85 |
84
|
gt0ne0d |
|
| 86 |
81 85
|
reccld |
|
| 87 |
86
|
adantr |
|
| 88 |
87 12
|
expcld |
|
| 89 |
1 80 12 88
|
fvmptd3 |
|
| 90 |
3 85
|
rereccld |
|
| 91 |
3 84
|
recgt0d |
|
| 92 |
18 19 90 22 91
|
lttrd |
|
| 93 |
|
ltdiv23 |
|
| 94 |
17 3 84 17 83 93
|
syl122anc |
|
| 95 |
|
1cnd |
|
| 96 |
95
|
div1d |
|
| 97 |
96
|
breq1d |
|
| 98 |
94 97
|
bitrd |
|
| 99 |
4 98
|
mpbird |
|
| 100 |
90 17
|
absltd |
|
| 101 |
92 99 100
|
mpbir2and |
|
| 102 |
86 101
|
expcnv |
|
| 103 |
1 102
|
eqbrtrid |
|
| 104 |
8 9 7 89 103
|
climi2 |
|
| 105 |
|
simpll |
|
| 106 |
|
uznnssnn |
|
| 107 |
106
|
ad2antlr |
|
| 108 |
|
simpr |
|
| 109 |
107 108
|
sseldd |
|
| 110 |
88
|
subid1d |
|
| 111 |
110
|
fveq2d |
|
| 112 |
90
|
adantr |
|
| 113 |
112 12
|
reexpcld |
|
| 114 |
19 90 91
|
ltled |
|
| 115 |
114
|
adantr |
|
| 116 |
112 12 115
|
expge0d |
|
| 117 |
113 116
|
absidd |
|
| 118 |
111 117
|
eqtrd |
|
| 119 |
118
|
breq1d |
|
| 120 |
119
|
biimpd |
|
| 121 |
105 109 120
|
syl2anc |
|
| 122 |
121
|
ralimdva |
|
| 123 |
122
|
reximdva |
|
| 124 |
104 123
|
mpd |
|
| 125 |
8
|
rexanuz2 |
|
| 126 |
79 124 125
|
sylanbrc |
|
| 127 |
|
simpr |
|
| 128 |
|
nnz |
|
| 129 |
|
uzid |
|
| 130 |
128 129
|
syl |
|
| 131 |
130
|
ad2antlr |
|
| 132 |
|
oveq2 |
|
| 133 |
132
|
oveq2d |
|
| 134 |
133
|
breq2d |
|
| 135 |
|
oveq2 |
|
| 136 |
135
|
breq1d |
|
| 137 |
134 136
|
anbi12d |
|
| 138 |
137
|
rspccva |
|
| 139 |
127 131 138
|
syl2anc |
|
| 140 |
|
1cnd |
|
| 141 |
81 85
|
jca |
|
| 142 |
141
|
adantr |
|
| 143 |
43
|
adantl |
|
| 144 |
|
expdiv |
|
| 145 |
140 142 143 144
|
syl3anc |
|
| 146 |
128
|
adantl |
|
| 147 |
|
1exp |
|
| 148 |
146 147
|
syl |
|
| 149 |
148
|
oveq1d |
|
| 150 |
145 149
|
eqtrd |
|
| 151 |
150
|
breq1d |
|
| 152 |
151
|
adantr |
|
| 153 |
152
|
anbi2d |
|
| 154 |
139 153
|
mpbid |
|
| 155 |
154
|
ex |
|
| 156 |
155
|
reximdva |
|
| 157 |
126 156
|
mpd |
|