Metamath Proof Explorer


Theorem expcnv

Description: A sequence of powers of a complex number A with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006) (Proof shortened by Mario Carneiro, 26-Apr-2014)

Ref Expression
Hypotheses expcnv.1 φ A
expcnv.2 φ A < 1
Assertion expcnv φ n 0 A n 0

Proof

Step Hyp Ref Expression
1 expcnv.1 φ A
2 expcnv.2 φ A < 1
3 nnuz = 1
4 1zzd φ A = 0 1
5 nn0ex 0 V
6 5 mptex n 0 A n V
7 6 a1i φ A = 0 n 0 A n V
8 0cnd φ A = 0 0
9 nnnn0 k k 0
10 oveq2 n = k A n = A k
11 eqid n 0 A n = n 0 A n
12 ovex A k V
13 10 11 12 fvmpt k 0 n 0 A n k = A k
14 9 13 syl k n 0 A n k = A k
15 simpr φ A = 0 A = 0
16 15 oveq1d φ A = 0 A k = 0 k
17 14 16 sylan9eqr φ A = 0 k n 0 A n k = 0 k
18 0exp k 0 k = 0
19 18 adantl φ A = 0 k 0 k = 0
20 17 19 eqtrd φ A = 0 k n 0 A n k = 0
21 3 4 7 8 20 climconst φ A = 0 n 0 A n 0
22 1zzd φ A 0 1
23 2 adantr φ A 0 A < 1
24 absrpcl A A 0 A +
25 1 24 sylan φ A 0 A +
26 25 reclt1d φ A 0 A < 1 1 < 1 A
27 23 26 mpbid φ A 0 1 < 1 A
28 1re 1
29 25 rpreccld φ A 0 1 A +
30 29 rpred φ A 0 1 A
31 difrp 1 1 A 1 < 1 A 1 A 1 +
32 28 30 31 sylancr φ A 0 1 < 1 A 1 A 1 +
33 27 32 mpbid φ A 0 1 A 1 +
34 33 rpreccld φ A 0 1 1 A 1 +
35 34 rpcnd φ A 0 1 1 A 1
36 divcnv 1 1 A 1 n 1 1 A 1 n 0
37 35 36 syl φ A 0 n 1 1 A 1 n 0
38 nnex V
39 38 mptex n A n V
40 39 a1i φ A 0 n A n V
41 oveq2 n = k 1 1 A 1 n = 1 1 A 1 k
42 eqid n 1 1 A 1 n = n 1 1 A 1 n
43 ovex 1 1 A 1 k V
44 41 42 43 fvmpt k n 1 1 A 1 n k = 1 1 A 1 k
45 44 adantl φ A 0 k n 1 1 A 1 n k = 1 1 A 1 k
46 34 rpred φ A 0 1 1 A 1
47 nndivre 1 1 A 1 k 1 1 A 1 k
48 46 47 sylan φ A 0 k 1 1 A 1 k
49 45 48 eqeltrd φ A 0 k n 1 1 A 1 n k
50 oveq2 n = k A n = A k
51 eqid n A n = n A n
52 ovex A k V
53 50 51 52 fvmpt k n A n k = A k
54 53 adantl φ A 0 k n A n k = A k
55 nnz k k
56 rpexpcl A + k A k +
57 25 55 56 syl2an φ A 0 k A k +
58 54 57 eqeltrd φ A 0 k n A n k +
59 58 rpred φ A 0 k n A n k
60 nnrp k k +
61 rpmulcl 1 A 1 + k + 1 A 1 k +
62 33 60 61 syl2an φ A 0 k 1 A 1 k +
63 62 rpred φ A 0 k 1 A 1 k
64 peano2re 1 A 1 k 1 A 1 k + 1
65 63 64 syl φ A 0 k 1 A 1 k + 1
66 rpexpcl 1 A + k 1 A k +
67 29 55 66 syl2an φ A 0 k 1 A k +
68 67 rpred φ A 0 k 1 A k
69 63 lep1d φ A 0 k 1 A 1 k 1 A 1 k + 1
70 30 adantr φ A 0 k 1 A
71 9 adantl φ A 0 k k 0
72 29 rpge0d φ A 0 0 1 A
73 72 adantr φ A 0 k 0 1 A
74 bernneq2 1 A k 0 0 1 A 1 A 1 k + 1 1 A k
75 70 71 73 74 syl3anc φ A 0 k 1 A 1 k + 1 1 A k
76 63 65 68 69 75 letrd φ A 0 k 1 A 1 k 1 A k
77 25 rpcnne0d φ A 0 A A 0
78 exprec A A 0 k 1 A k = 1 A k
79 78 3expa A A 0 k 1 A k = 1 A k
80 77 55 79 syl2an φ A 0 k 1 A k = 1 A k
81 76 80 breqtrd φ A 0 k 1 A 1 k 1 A k
82 62 57 81 lerec2d φ A 0 k A k 1 1 A 1 k
83 33 rpcnne0d φ A 0 1 A 1 1 A 1 0
84 nncn k k
85 nnne0 k k 0
86 84 85 jca k k k 0
87 recdiv2 1 A 1 1 A 1 0 k k 0 1 1 A 1 k = 1 1 A 1 k
88 83 86 87 syl2an φ A 0 k 1 1 A 1 k = 1 1 A 1 k
89 82 88 breqtrrd φ A 0 k A k 1 1 A 1 k
90 89 54 45 3brtr4d φ A 0 k n A n k n 1 1 A 1 n k
91 58 rpge0d φ A 0 k 0 n A n k
92 3 22 37 40 49 59 90 91 climsqz2 φ A 0 n A n 0
93 1zzd φ 1
94 6 a1i φ n 0 A n V
95 39 a1i φ n A n V
96 9 adantl φ k k 0
97 96 13 syl φ k n 0 A n k = A k
98 expcl A k 0 A k
99 1 9 98 syl2an φ k A k
100 97 99 eqeltrd φ k n 0 A n k
101 absexp A k 0 A k = A k
102 1 9 101 syl2an φ k A k = A k
103 97 fveq2d φ k n 0 A n k = A k
104 53 adantl φ k n A n k = A k
105 102 103 104 3eqtr4rd φ k n A n k = n 0 A n k
106 3 93 94 95 100 105 climabs0 φ n 0 A n 0 n A n 0
107 106 biimpar φ n A n 0 n 0 A n 0
108 92 107 syldan φ A 0 n 0 A n 0
109 21 108 pm2.61dane φ n 0 A n 0