Metamath Proof Explorer


Theorem explecnv

Description: A sequence of terms converges to zero when it is less than powers of a number A whose absolute value is smaller than 1. (Contributed by NM, 19-Jul-2008) (Revised by Mario Carneiro, 26-Apr-2014)

Ref Expression
Hypotheses explecnv.1 Z = M
explecnv.2 φ F V
explecnv.3 φ M
explecnv.5 φ A
explecnv.4 φ A < 1
explecnv.6 φ k Z F k
explecnv.7 φ k Z F k A k
Assertion explecnv φ F 0

Proof

Step Hyp Ref Expression
1 explecnv.1 Z = M
2 explecnv.2 φ F V
3 explecnv.3 φ M
4 explecnv.5 φ A
5 explecnv.4 φ A < 1
6 explecnv.6 φ k Z F k
7 explecnv.7 φ k Z F k A k
8 eqid if M 0 0 M = if M 0 0 M
9 0z 0
10 ifcl 0 M if M 0 0 M
11 9 3 10 sylancr φ if M 0 0 M
12 4 recnd φ A
13 12 5 expcnv φ n 0 A n 0
14 1 fvexi Z V
15 14 mptex n Z F n V
16 15 a1i φ n Z F n V
17 nn0uz 0 = 0
18 1 17 ineq12i Z 0 = M 0
19 uzin M 0 M 0 = if M 0 0 M
20 3 9 19 sylancl φ M 0 = if M 0 0 M
21 18 20 syl5req φ if M 0 0 M = Z 0
22 21 eleq2d φ k if M 0 0 M k Z 0
23 22 biimpa φ k if M 0 0 M k Z 0
24 23 elin2d φ k if M 0 0 M k 0
25 oveq2 n = k A n = A k
26 eqid n 0 A n = n 0 A n
27 ovex A k V
28 25 26 27 fvmpt k 0 n 0 A n k = A k
29 24 28 syl φ k if M 0 0 M n 0 A n k = A k
30 4 adantr φ k if M 0 0 M A
31 30 24 reexpcld φ k if M 0 0 M A k
32 29 31 eqeltrd φ k if M 0 0 M n 0 A n k
33 23 elin1d φ k if M 0 0 M k Z
34 2fveq3 n = k F n = F k
35 eqid n Z F n = n Z F n
36 fvex F k V
37 34 35 36 fvmpt k Z n Z F n k = F k
38 33 37 syl φ k if M 0 0 M n Z F n k = F k
39 33 6 syldan φ k if M 0 0 M F k
40 39 abscld φ k if M 0 0 M F k
41 38 40 eqeltrd φ k if M 0 0 M n Z F n k
42 33 7 syldan φ k if M 0 0 M F k A k
43 42 38 29 3brtr4d φ k if M 0 0 M n Z F n k n 0 A n k
44 39 absge0d φ k if M 0 0 M 0 F k
45 44 38 breqtrrd φ k if M 0 0 M 0 n Z F n k
46 8 11 13 16 32 41 43 45 climsqz2 φ n Z F n 0
47 37 adantl φ k Z n Z F n k = F k
48 1 3 2 16 6 47 climabs0 φ F 0 n Z F n 0
49 46 48 mpbird φ F 0