Step |
Hyp |
Ref |
Expression |
1 |
|
geoserg.1 |
|
2 |
|
geoserg.2 |
|
3 |
|
geoserg.3 |
|
4 |
|
geoserg.4 |
|
5 |
|
fzofi |
|
6 |
5
|
a1i |
|
7 |
|
ax-1cn |
|
8 |
|
subcl |
|
9 |
7 1 8
|
sylancr |
|
10 |
1
|
adantr |
|
11 |
|
elfzouz |
|
12 |
|
eluznn0 |
|
13 |
3 11 12
|
syl2an |
|
14 |
10 13
|
expcld |
|
15 |
6 9 14
|
fsummulc1 |
|
16 |
7
|
a1i |
|
17 |
14 16 10
|
subdid |
|
18 |
14
|
mulid1d |
|
19 |
10 13
|
expp1d |
|
20 |
19
|
eqcomd |
|
21 |
18 20
|
oveq12d |
|
22 |
17 21
|
eqtrd |
|
23 |
22
|
sumeq2dv |
|
24 |
|
oveq2 |
|
25 |
|
oveq2 |
|
26 |
|
oveq2 |
|
27 |
|
oveq2 |
|
28 |
1
|
adantr |
|
29 |
|
elfzuz |
|
30 |
|
eluznn0 |
|
31 |
3 29 30
|
syl2an |
|
32 |
28 31
|
expcld |
|
33 |
24 25 26 27 4 32
|
telfsumo |
|
34 |
15 23 33
|
3eqtrrd |
|
35 |
1 3
|
expcld |
|
36 |
|
eluznn0 |
|
37 |
3 4 36
|
syl2anc |
|
38 |
1 37
|
expcld |
|
39 |
35 38
|
subcld |
|
40 |
6 14
|
fsumcl |
|
41 |
2
|
necomd |
|
42 |
|
subeq0 |
|
43 |
7 1 42
|
sylancr |
|
44 |
43
|
necon3bid |
|
45 |
41 44
|
mpbird |
|
46 |
39 40 9 45
|
divmul3d |
|
47 |
34 46
|
mpbird |
|
48 |
47
|
eqcomd |
|