| Step |
Hyp |
Ref |
Expression |
| 1 |
|
geoserg.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
geoserg.2 |
⊢ ( 𝜑 → 𝐴 ≠ 1 ) |
| 3 |
|
geoserg.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 4 |
|
geoserg.4 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 5 |
|
fzofi |
⊢ ( 𝑀 ..^ 𝑁 ) ∈ Fin |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → ( 𝑀 ..^ 𝑁 ) ∈ Fin ) |
| 7 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 8 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 − 𝐴 ) ∈ ℂ ) |
| 9 |
7 1 8
|
sylancr |
⊢ ( 𝜑 → ( 1 − 𝐴 ) ∈ ℂ ) |
| 10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 11 |
|
elfzouz |
⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 12 |
|
eluznn0 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ0 ) |
| 13 |
3 11 12
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 14 |
10 13
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 15 |
6 9 14
|
fsummulc1 |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 ) · ( 1 − 𝐴 ) ) = Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 1 − 𝐴 ) ) ) |
| 16 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 1 ∈ ℂ ) |
| 17 |
14 16 10
|
subdid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐴 ↑ 𝑘 ) · ( 1 − 𝐴 ) ) = ( ( ( 𝐴 ↑ 𝑘 ) · 1 ) − ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) ) |
| 18 |
14
|
mulridd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐴 ↑ 𝑘 ) · 1 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 19 |
10 13
|
expp1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
| 20 |
19
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) = ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) |
| 21 |
18 20
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ( 𝐴 ↑ 𝑘 ) · 1 ) − ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) = ( ( 𝐴 ↑ 𝑘 ) − ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) |
| 22 |
17 21
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐴 ↑ 𝑘 ) · ( 1 − 𝐴 ) ) = ( ( 𝐴 ↑ 𝑘 ) − ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) |
| 23 |
22
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 1 − 𝐴 ) ) = Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) − ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) |
| 24 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 25 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) |
| 26 |
|
oveq2 |
⊢ ( 𝑗 = 𝑀 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 𝑀 ) ) |
| 27 |
|
oveq2 |
⊢ ( 𝑗 = 𝑁 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 𝑁 ) ) |
| 28 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 29 |
|
elfzuz |
⊢ ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 30 |
|
eluznn0 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑗 ∈ ℕ0 ) |
| 31 |
3 29 30
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑗 ∈ ℕ0 ) |
| 32 |
28 31
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐴 ↑ 𝑗 ) ∈ ℂ ) |
| 33 |
24 25 26 27 4 32
|
telfsumo |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) − ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) − ( 𝐴 ↑ 𝑁 ) ) ) |
| 34 |
15 23 33
|
3eqtrrd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑀 ) − ( 𝐴 ↑ 𝑁 ) ) = ( Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 ) · ( 1 − 𝐴 ) ) ) |
| 35 |
1 3
|
expcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) |
| 36 |
|
eluznn0 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑁 ∈ ℕ0 ) |
| 37 |
3 4 36
|
syl2anc |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 38 |
1 37
|
expcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
| 39 |
35 38
|
subcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑀 ) − ( 𝐴 ↑ 𝑁 ) ) ∈ ℂ ) |
| 40 |
6 14
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 41 |
2
|
necomd |
⊢ ( 𝜑 → 1 ≠ 𝐴 ) |
| 42 |
|
subeq0 |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − 𝐴 ) = 0 ↔ 1 = 𝐴 ) ) |
| 43 |
7 1 42
|
sylancr |
⊢ ( 𝜑 → ( ( 1 − 𝐴 ) = 0 ↔ 1 = 𝐴 ) ) |
| 44 |
43
|
necon3bid |
⊢ ( 𝜑 → ( ( 1 − 𝐴 ) ≠ 0 ↔ 1 ≠ 𝐴 ) ) |
| 45 |
41 44
|
mpbird |
⊢ ( 𝜑 → ( 1 − 𝐴 ) ≠ 0 ) |
| 46 |
39 40 9 45
|
divmul3d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 𝑀 ) − ( 𝐴 ↑ 𝑁 ) ) / ( 1 − 𝐴 ) ) = Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 ) ↔ ( ( 𝐴 ↑ 𝑀 ) − ( 𝐴 ↑ 𝑁 ) ) = ( Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 ) · ( 1 − 𝐴 ) ) ) ) |
| 47 |
34 46
|
mpbird |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 𝑀 ) − ( 𝐴 ↑ 𝑁 ) ) / ( 1 − 𝐴 ) ) = Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 ) ) |
| 48 |
47
|
eqcomd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 ) = ( ( ( 𝐴 ↑ 𝑀 ) − ( 𝐴 ↑ 𝑁 ) ) / ( 1 − 𝐴 ) ) ) |