Metamath Proof Explorer


Theorem lerec2d

Description: Reciprocal swap in a 'less than or equal to' relation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1 φ A +
rpaddcld.1 φ B +
lerec2d.2 φ A 1 B
Assertion lerec2d φ B 1 A

Proof

Step Hyp Ref Expression
1 rpred.1 φ A +
2 rpaddcld.1 φ B +
3 lerec2d.2 φ A 1 B
4 1 rpregt0d φ A 0 < A
5 2 rpregt0d φ B 0 < B
6 lerec2 A 0 < A B 0 < B A 1 B B 1 A
7 4 5 6 syl2anc φ A 1 B B 1 A
8 3 7 mpbid φ B 1 A