Metamath Proof Explorer


Theorem lerec2

Description: Reciprocal swap in a 'less than or equal to' relation. (Contributed by NM, 24-Feb-2005)

Ref Expression
Assertion lerec2 A0<AB0<BA1BB1A

Proof

Step Hyp Ref Expression
1 gt0ne0 B0<BB0
2 rereccl BB01B
3 1 2 syldan B0<B1B
4 recgt0 B0<B0<1B
5 3 4 jca B0<B1B0<1B
6 lerec A0<A1B0<1BA1B11B1A
7 5 6 sylan2 A0<AB0<BA1B11B1A
8 recn BB
9 recrec BB011B=B
10 8 1 9 syl2an2r B0<B11B=B
11 10 adantl A0<AB0<B11B=B
12 11 breq1d A0<AB0<B11B1AB1A
13 7 12 bitrd A0<AB0<BA1BB1A