Metamath Proof Explorer


Theorem ledivdiv

Description: Invert ratios of positive numbers and swap their ordering. (Contributed by NM, 9-Jan-2006)

Ref Expression
Assertion ledivdiv A0<AB0<BC0<CD0<DABCDDCBA

Proof

Step Hyp Ref Expression
1 simpl B0<BB
2 gt0ne0 B0<BB0
3 1 2 jca B0<BBB0
4 redivcl ABB0AB
5 4 3expb ABB0AB
6 3 5 sylan2 AB0<BAB
7 6 adantlr A0<AB0<BAB
8 divgt0 A0<AB0<B0<AB
9 7 8 jca A0<AB0<BAB0<AB
10 simpl D0<DD
11 gt0ne0 D0<DD0
12 10 11 jca D0<DDD0
13 redivcl CDD0CD
14 13 3expb CDD0CD
15 12 14 sylan2 CD0<DCD
16 15 adantlr C0<CD0<DCD
17 divgt0 C0<CD0<D0<CD
18 16 17 jca C0<CD0<DCD0<CD
19 lerec AB0<ABCD0<CDABCD1CD1AB
20 9 18 19 syl2an A0<AB0<BC0<CD0<DABCD1CD1AB
21 recn CC
22 21 adantr C0<CC
23 gt0ne0 C0<CC0
24 22 23 jca C0<CCC0
25 recn DD
26 25 adantr D0<DD
27 26 11 jca D0<DDD0
28 recdiv CC0DD01CD=DC
29 24 27 28 syl2an C0<CD0<D1CD=DC
30 recn AA
31 30 adantr A0<AA
32 gt0ne0 A0<AA0
33 31 32 jca A0<AAA0
34 recn BB
35 34 adantr B0<BB
36 35 2 jca B0<BBB0
37 recdiv AA0BB01AB=BA
38 33 36 37 syl2an A0<AB0<B1AB=BA
39 29 38 breqan12rd A0<AB0<BC0<CD0<D1CD1ABDCBA
40 20 39 bitrd A0<AB0<BC0<CD0<DABCDDCBA