| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ∈ ℝ ) |
| 2 |
|
gt0ne0 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ≠ 0 ) |
| 3 |
1 2
|
jca |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) |
| 4 |
|
redivcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 5 |
4
|
3expb |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 6 |
3 5
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 7 |
6
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 8 |
|
divgt0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 / 𝐵 ) ) |
| 9 |
7 8
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 / 𝐵 ) ) ) |
| 10 |
|
simpl |
⊢ ( ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) → 𝐷 ∈ ℝ ) |
| 11 |
|
gt0ne0 |
⊢ ( ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) → 𝐷 ≠ 0 ) |
| 12 |
10 11
|
jca |
⊢ ( ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) → ( 𝐷 ∈ ℝ ∧ 𝐷 ≠ 0 ) ) |
| 13 |
|
redivcl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐷 ≠ 0 ) → ( 𝐶 / 𝐷 ) ∈ ℝ ) |
| 14 |
13
|
3expb |
⊢ ( ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 𝐷 ≠ 0 ) ) → ( 𝐶 / 𝐷 ) ∈ ℝ ) |
| 15 |
12 14
|
sylan2 |
⊢ ( ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) → ( 𝐶 / 𝐷 ) ∈ ℝ ) |
| 16 |
15
|
adantlr |
⊢ ( ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) → ( 𝐶 / 𝐷 ) ∈ ℝ ) |
| 17 |
|
divgt0 |
⊢ ( ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) → 0 < ( 𝐶 / 𝐷 ) ) |
| 18 |
16 17
|
jca |
⊢ ( ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) → ( ( 𝐶 / 𝐷 ) ∈ ℝ ∧ 0 < ( 𝐶 / 𝐷 ) ) ) |
| 19 |
|
lerec |
⊢ ( ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 / 𝐵 ) ) ∧ ( ( 𝐶 / 𝐷 ) ∈ ℝ ∧ 0 < ( 𝐶 / 𝐷 ) ) ) → ( ( 𝐴 / 𝐵 ) ≤ ( 𝐶 / 𝐷 ) ↔ ( 1 / ( 𝐶 / 𝐷 ) ) ≤ ( 1 / ( 𝐴 / 𝐵 ) ) ) ) |
| 20 |
9 18 19
|
syl2an |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( ( 𝐴 / 𝐵 ) ≤ ( 𝐶 / 𝐷 ) ↔ ( 1 / ( 𝐶 / 𝐷 ) ) ≤ ( 1 / ( 𝐴 / 𝐵 ) ) ) ) |
| 21 |
|
recn |
⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → 𝐶 ∈ ℂ ) |
| 23 |
|
gt0ne0 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → 𝐶 ≠ 0 ) |
| 24 |
22 23
|
jca |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) |
| 25 |
|
recn |
⊢ ( 𝐷 ∈ ℝ → 𝐷 ∈ ℂ ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) → 𝐷 ∈ ℂ ) |
| 27 |
26 11
|
jca |
⊢ ( ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) → ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) |
| 28 |
|
recdiv |
⊢ ( ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 1 / ( 𝐶 / 𝐷 ) ) = ( 𝐷 / 𝐶 ) ) |
| 29 |
24 27 28
|
syl2an |
⊢ ( ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) → ( 1 / ( 𝐶 / 𝐷 ) ) = ( 𝐷 / 𝐶 ) ) |
| 30 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℂ ) |
| 32 |
|
gt0ne0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
| 33 |
31 32
|
jca |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
| 34 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ∈ ℂ ) |
| 36 |
35 2
|
jca |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 37 |
|
recdiv |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 1 / ( 𝐴 / 𝐵 ) ) = ( 𝐵 / 𝐴 ) ) |
| 38 |
33 36 37
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 1 / ( 𝐴 / 𝐵 ) ) = ( 𝐵 / 𝐴 ) ) |
| 39 |
29 38
|
breqan12rd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( ( 1 / ( 𝐶 / 𝐷 ) ) ≤ ( 1 / ( 𝐴 / 𝐵 ) ) ↔ ( 𝐷 / 𝐶 ) ≤ ( 𝐵 / 𝐴 ) ) ) |
| 40 |
20 39
|
bitrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( ( 𝐴 / 𝐵 ) ≤ ( 𝐶 / 𝐷 ) ↔ ( 𝐷 / 𝐶 ) ≤ ( 𝐵 / 𝐴 ) ) ) |