Metamath Proof Explorer


Theorem lediv2

Description: Division of a positive number by both sides of 'less than or equal to'. (Contributed by NM, 10-Jan-2006)

Ref Expression
Assertion lediv2 A0<AB0<BC0<CABCBCA

Proof

Step Hyp Ref Expression
1 gt0ne0 B0<BB0
2 rereccl BB01B
3 1 2 syldan B0<B1B
4 3 3ad2ant2 A0<AB0<BC0<C1B
5 gt0ne0 A0<AA0
6 rereccl AA01A
7 5 6 syldan A0<A1A
8 7 3ad2ant1 A0<AB0<BC0<C1A
9 simp3l A0<AB0<BC0<CC
10 simp3r A0<AB0<BC0<C0<C
11 lemul2 1B1AC0<C1B1AC1BC1A
12 4 8 9 10 11 syl112anc A0<AB0<BC0<C1B1AC1BC1A
13 lerec A0<AB0<BAB1B1A
14 13 3adant3 A0<AB0<BC0<CAB1B1A
15 recn CC
16 recn BB
17 16 adantr B0<BB
18 17 1 jca B0<BBB0
19 divrec CBB0CB=C1B
20 19 3expb CBB0CB=C1B
21 15 18 20 syl2an CB0<BCB=C1B
22 21 3adant2 CA0<AB0<BCB=C1B
23 recn AA
24 23 adantr A0<AA
25 24 5 jca A0<AAA0
26 divrec CAA0CA=C1A
27 26 3expb CAA0CA=C1A
28 15 25 27 syl2an CA0<ACA=C1A
29 28 3adant3 CA0<AB0<BCA=C1A
30 22 29 breq12d CA0<AB0<BCBCAC1BC1A
31 30 3coml A0<AB0<BCCBCAC1BC1A
32 31 3adant3r A0<AB0<BC0<CCBCAC1BC1A
33 12 14 32 3bitr4d A0<AB0<BC0<CABCBCA