| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
fveq2d |
|
| 3 |
|
oveq2 |
|
| 4 |
2 3
|
eqeq12d |
|
| 5 |
|
oveq2 |
|
| 6 |
5
|
fveq2d |
|
| 7 |
|
oveq2 |
|
| 8 |
6 7
|
eqeq12d |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
fveq2d |
|
| 11 |
|
oveq2 |
|
| 12 |
10 11
|
eqeq12d |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
fveq2d |
|
| 15 |
|
oveq2 |
|
| 16 |
14 15
|
eqeq12d |
|
| 17 |
|
abs1 |
|
| 18 |
|
exp0 |
|
| 19 |
18
|
fveq2d |
|
| 20 |
|
abscl |
|
| 21 |
20
|
recnd |
|
| 22 |
21
|
exp0d |
|
| 23 |
17 19 22
|
3eqtr4a |
|
| 24 |
|
oveq1 |
|
| 25 |
24
|
adantl |
|
| 26 |
|
expp1 |
|
| 27 |
26
|
fveq2d |
|
| 28 |
|
expcl |
|
| 29 |
|
simpl |
|
| 30 |
|
absmul |
|
| 31 |
28 29 30
|
syl2anc |
|
| 32 |
27 31
|
eqtrd |
|
| 33 |
32
|
adantr |
|
| 34 |
|
expp1 |
|
| 35 |
21 34
|
sylan |
|
| 36 |
35
|
adantr |
|
| 37 |
25 33 36
|
3eqtr4d |
|
| 38 |
4 8 12 16 23 37
|
nn0indd |
|