| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elznn0nn |
|
| 2 |
|
absexp |
|
| 3 |
2
|
ex |
|
| 4 |
3
|
adantr |
|
| 5 |
|
1cnd |
|
| 6 |
|
simpll |
|
| 7 |
|
nnnn0 |
|
| 8 |
7
|
ad2antll |
|
| 9 |
6 8
|
expcld |
|
| 10 |
|
simplr |
|
| 11 |
|
nnz |
|
| 12 |
11
|
ad2antll |
|
| 13 |
6 10 12
|
expne0d |
|
| 14 |
|
absdiv |
|
| 15 |
5 9 13 14
|
syl3anc |
|
| 16 |
|
abs1 |
|
| 17 |
16
|
oveq1i |
|
| 18 |
|
absexp |
|
| 19 |
6 8 18
|
syl2anc |
|
| 20 |
19
|
oveq2d |
|
| 21 |
17 20
|
eqtrid |
|
| 22 |
15 21
|
eqtrd |
|
| 23 |
|
simprl |
|
| 24 |
23
|
recnd |
|
| 25 |
|
expneg2 |
|
| 26 |
6 24 8 25
|
syl3anc |
|
| 27 |
26
|
fveq2d |
|
| 28 |
|
abscl |
|
| 29 |
28
|
ad2antrr |
|
| 30 |
29
|
recnd |
|
| 31 |
|
expneg2 |
|
| 32 |
30 24 8 31
|
syl3anc |
|
| 33 |
22 27 32
|
3eqtr4d |
|
| 34 |
33
|
ex |
|
| 35 |
4 34
|
jaod |
|
| 36 |
35
|
3impia |
|
| 37 |
1 36
|
syl3an3b |
|