Metamath Proof Explorer


Theorem bernneq2

Description: Variation of Bernoulli's inequality bernneq . (Contributed by NM, 18-Oct-2007)

Ref Expression
Assertion bernneq2 AN00AA1 N+1AN

Proof

Step Hyp Ref Expression
1 peano2rem AA1
2 1 3ad2ant1 AN00AA1
3 simp2 AN00AN0
4 df-neg 1=01
5 0re 0
6 1re 1
7 lesub1 0A10A01A1
8 5 6 7 mp3an13 A0A01A1
9 8 biimpa A0A01A1
10 4 9 eqbrtrid A0A1A1
11 10 3adant2 AN00A1A1
12 bernneq A1N01A11+A1 N1+A-1N
13 2 3 11 12 syl3anc AN00A1+A1 N1+A-1N
14 ax-1cn 1
15 1 recnd AA1
16 nn0cn N0N
17 mulcl A1NA1 N
18 15 16 17 syl2an AN0A1 N
19 addcom 1A1 N1+A1 N=A1 N+1
20 14 18 19 sylancr AN01+A1 N=A1 N+1
21 20 3adant3 AN00A1+A1 N=A1 N+1
22 recn AA
23 pncan3 1A1+A-1=A
24 14 22 23 sylancr A1+A-1=A
25 24 oveq1d A1+A-1N=AN
26 25 3ad2ant1 AN00A1+A-1N=AN
27 13 21 26 3brtr3d AN00AA1 N+1AN