Description: Variation of Bernoulli's inequality bernneq . (Contributed by NM, 18-Oct-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | bernneq2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2rem | |
|
2 | 1 | 3ad2ant1 | |
3 | simp2 | |
|
4 | df-neg | |
|
5 | 0re | |
|
6 | 1re | |
|
7 | lesub1 | |
|
8 | 5 6 7 | mp3an13 | |
9 | 8 | biimpa | |
10 | 4 9 | eqbrtrid | |
11 | 10 | 3adant2 | |
12 | bernneq | |
|
13 | 2 3 11 12 | syl3anc | |
14 | ax-1cn | |
|
15 | 1 | recnd | |
16 | nn0cn | |
|
17 | mulcl | |
|
18 | 15 16 17 | syl2an | |
19 | addcom | |
|
20 | 14 18 19 | sylancr | |
21 | 20 | 3adant3 | |
22 | recn | |
|
23 | pncan3 | |
|
24 | 14 22 23 | sylancr | |
25 | 24 | oveq1d | |
26 | 25 | 3ad2ant1 | |
27 | 13 21 26 | 3brtr3d | |