Metamath Proof Explorer


Theorem bernneq3

Description: A corollary of bernneq . (Contributed by Mario Carneiro, 11-Mar-2014)

Ref Expression
Assertion bernneq3 P2N0N<PN

Proof

Step Hyp Ref Expression
1 nn0re N0N
2 1 adantl P2N0N
3 peano2re NN+1
4 2 3 syl P2N0N+1
5 eluzelre P2P
6 reexpcl PN0PN
7 5 6 sylan P2N0PN
8 2 ltp1d P2N0N<N+1
9 uz2m1nn P2P1
10 9 adantr P2N0P1
11 10 nnred P2N0P1
12 11 2 remulcld P2N0P1 N
13 peano2re P1 NP1 N+1
14 12 13 syl P2N0P1 N+1
15 1red P2N01
16 nn0ge0 N00N
17 16 adantl P2N00N
18 10 nnge1d P2N01P1
19 2 11 17 18 lemulge12d P2N0NP1 N
20 2 12 15 19 leadd1dd P2N0N+1P1 N+1
21 5 adantr P2N0P
22 simpr P2N0N0
23 eluzge2nn0 P2P0
24 nn0ge0 P00P
25 23 24 syl P20P
26 25 adantr P2N00P
27 bernneq2 PN00PP1 N+1PN
28 21 22 26 27 syl3anc P2N0P1 N+1PN
29 4 14 7 20 28 letrd P2N0N+1PN
30 2 4 7 8 29 ltletrd P2N0N<PN