Description: A corollary of bernneq . (Contributed by Mario Carneiro, 11-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | bernneq3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re | |
|
2 | 1 | adantl | |
3 | peano2re | |
|
4 | 2 3 | syl | |
5 | eluzelre | |
|
6 | reexpcl | |
|
7 | 5 6 | sylan | |
8 | 2 | ltp1d | |
9 | uz2m1nn | |
|
10 | 9 | adantr | |
11 | 10 | nnred | |
12 | 11 2 | remulcld | |
13 | peano2re | |
|
14 | 12 13 | syl | |
15 | 1red | |
|
16 | nn0ge0 | |
|
17 | 16 | adantl | |
18 | 10 | nnge1d | |
19 | 2 11 17 18 | lemulge12d | |
20 | 2 12 15 19 | leadd1dd | |
21 | 5 | adantr | |
22 | simpr | |
|
23 | eluzge2nn0 | |
|
24 | nn0ge0 | |
|
25 | 23 24 | syl | |
26 | 25 | adantr | |
27 | bernneq2 | |
|
28 | 21 22 26 27 | syl3anc | |
29 | 4 14 7 20 28 | letrd | |
30 | 2 4 7 8 29 | ltletrd | |