| Step |
Hyp |
Ref |
Expression |
| 1 |
|
expcnv.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
expcnv.2 |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) < 1 ) |
| 3 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 4 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → 1 ∈ ℤ ) |
| 5 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 6 |
5
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ∈ V |
| 7 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ∈ V ) |
| 8 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → 0 ∈ ℂ ) |
| 9 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 10 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 11 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) |
| 12 |
|
ovex |
⊢ ( 𝐴 ↑ 𝑘 ) ∈ V |
| 13 |
10 11 12
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 14 |
9 13
|
syl |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → 𝐴 = 0 ) |
| 16 |
15
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( 𝐴 ↑ 𝑘 ) = ( 0 ↑ 𝑘 ) ) |
| 17 |
14 16
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 0 ↑ 𝑘 ) ) |
| 18 |
|
0exp |
⊢ ( 𝑘 ∈ ℕ → ( 0 ↑ 𝑘 ) = 0 ) |
| 19 |
18
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝑘 ∈ ℕ ) → ( 0 ↑ 𝑘 ) = 0 ) |
| 20 |
17 19
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = 0 ) |
| 21 |
3 4 7 8 20
|
climconst |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ⇝ 0 ) |
| 22 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 1 ∈ ℤ ) |
| 23 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) < 1 ) |
| 24 |
|
absrpcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 25 |
1 24
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 26 |
25
|
reclt1d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) < 1 ↔ 1 < ( 1 / ( abs ‘ 𝐴 ) ) ) ) |
| 27 |
23 26
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 1 < ( 1 / ( abs ‘ 𝐴 ) ) ) |
| 28 |
|
1re |
⊢ 1 ∈ ℝ |
| 29 |
25
|
rpreccld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 1 / ( abs ‘ 𝐴 ) ) ∈ ℝ+ ) |
| 30 |
29
|
rpred |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 1 / ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 31 |
|
difrp |
⊢ ( ( 1 ∈ ℝ ∧ ( 1 / ( abs ‘ 𝐴 ) ) ∈ ℝ ) → ( 1 < ( 1 / ( abs ‘ 𝐴 ) ) ↔ ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ∈ ℝ+ ) ) |
| 32 |
28 30 31
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 1 < ( 1 / ( abs ‘ 𝐴 ) ) ↔ ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ∈ ℝ+ ) ) |
| 33 |
27 32
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ∈ ℝ+ ) |
| 34 |
33
|
rpreccld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) ∈ ℝ+ ) |
| 35 |
34
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) ∈ ℂ ) |
| 36 |
|
divcnv |
⊢ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) ⇝ 0 ) |
| 37 |
35 36
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) ⇝ 0 ) |
| 38 |
|
nnex |
⊢ ℕ ∈ V |
| 39 |
38
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ∈ V |
| 40 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ∈ V ) |
| 41 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) = ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) ) |
| 42 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) |
| 43 |
|
ovex |
⊢ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) ∈ V |
| 44 |
41 42 43
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) ) |
| 45 |
44
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) ) |
| 46 |
34
|
rpred |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) ∈ ℝ ) |
| 47 |
|
nndivre |
⊢ ( ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) ∈ ℝ ) |
| 48 |
46 47
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) ∈ ℝ ) |
| 49 |
45 48
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 50 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 51 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) |
| 52 |
|
ovex |
⊢ ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ V |
| 53 |
50 51 52
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 54 |
53
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 55 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
| 56 |
|
rpexpcl |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ+ ) |
| 57 |
25 55 56
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ+ ) |
| 58 |
54 57
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ+ ) |
| 59 |
58
|
rpred |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 60 |
|
nnrp |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) |
| 61 |
|
rpmulcl |
⊢ ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ∈ ℝ+ ∧ 𝑘 ∈ ℝ+ ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ∈ ℝ+ ) |
| 62 |
33 60 61
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ∈ ℝ+ ) |
| 63 |
62
|
rpred |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ∈ ℝ ) |
| 64 |
|
peano2re |
⊢ ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ∈ ℝ → ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) + 1 ) ∈ ℝ ) |
| 65 |
63 64
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) + 1 ) ∈ ℝ ) |
| 66 |
|
rpexpcl |
⊢ ( ( ( 1 / ( abs ‘ 𝐴 ) ) ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ∈ ℝ+ ) |
| 67 |
29 55 66
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ∈ ℝ+ ) |
| 68 |
67
|
rpred |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ∈ ℝ ) |
| 69 |
63
|
lep1d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ≤ ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) + 1 ) ) |
| 70 |
30
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 71 |
9
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 ) |
| 72 |
29
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 0 ≤ ( 1 / ( abs ‘ 𝐴 ) ) ) |
| 73 |
72
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 1 / ( abs ‘ 𝐴 ) ) ) |
| 74 |
|
bernneq2 |
⊢ ( ( ( 1 / ( abs ‘ 𝐴 ) ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ ( 1 / ( abs ‘ 𝐴 ) ) ) → ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) + 1 ) ≤ ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ) |
| 75 |
70 71 73 74
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) + 1 ) ≤ ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ) |
| 76 |
63 65 68 69 75
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ≤ ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ) |
| 77 |
25
|
rpcnne0d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ≠ 0 ) ) |
| 78 |
|
exprec |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ≠ 0 ∧ 𝑘 ∈ ℤ ) → ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) = ( 1 / ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 79 |
78
|
3expa |
⊢ ( ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ≠ 0 ) ∧ 𝑘 ∈ ℤ ) → ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) = ( 1 / ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 80 |
77 55 79
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) = ( 1 / ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 81 |
76 80
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ≤ ( 1 / ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 82 |
62 57 81
|
lerec2d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ≤ ( 1 / ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ) ) |
| 83 |
33
|
rpcnne0d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ∈ ℂ ∧ ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ≠ 0 ) ) |
| 84 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
| 85 |
|
nnne0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) |
| 86 |
84 85
|
jca |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ) |
| 87 |
|
recdiv2 |
⊢ ( ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ∈ ℂ ∧ ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ≠ 0 ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ) → ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) = ( 1 / ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ) ) |
| 88 |
83 86 87
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) = ( 1 / ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ) ) |
| 89 |
82 88
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ≤ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) ) |
| 90 |
89 54 45
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) ‘ 𝑘 ) ) |
| 91 |
58
|
rpge0d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ) |
| 92 |
3 22 37 40 49 59 90 91
|
climsqz2 |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ⇝ 0 ) |
| 93 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 94 |
6
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ∈ V ) |
| 95 |
39
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ∈ V ) |
| 96 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 ) |
| 97 |
96 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 98 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 99 |
1 9 98
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 100 |
97 99
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 101 |
|
absexp |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 102 |
1 9 101
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 103 |
97
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) ) = ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) ) |
| 104 |
53
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 105 |
102 103 104
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) ) ) |
| 106 |
3 93 94 95 100 105
|
climabs0 |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ⇝ 0 ↔ ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ⇝ 0 ) ) |
| 107 |
106
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ⇝ 0 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ⇝ 0 ) |
| 108 |
92 107
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ⇝ 0 ) |
| 109 |
21 108
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ⇝ 0 ) |