Metamath Proof Explorer


Theorem expcnv

Description: A sequence of powers of a complex number A with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006) (Proof shortened by Mario Carneiro, 26-Apr-2014)

Ref Expression
Hypotheses expcnv.1 ( 𝜑𝐴 ∈ ℂ )
expcnv.2 ( 𝜑 → ( abs ‘ 𝐴 ) < 1 )
Assertion expcnv ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) ⇝ 0 )

Proof

Step Hyp Ref Expression
1 expcnv.1 ( 𝜑𝐴 ∈ ℂ )
2 expcnv.2 ( 𝜑 → ( abs ‘ 𝐴 ) < 1 )
3 nnuz ℕ = ( ℤ ‘ 1 )
4 1zzd ( ( 𝜑𝐴 = 0 ) → 1 ∈ ℤ )
5 nn0ex 0 ∈ V
6 5 mptex ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) ∈ V
7 6 a1i ( ( 𝜑𝐴 = 0 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) ∈ V )
8 0cnd ( ( 𝜑𝐴 = 0 ) → 0 ∈ ℂ )
9 nnnn0 ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 )
10 oveq2 ( 𝑛 = 𝑘 → ( 𝐴𝑛 ) = ( 𝐴𝑘 ) )
11 eqid ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) )
12 ovex ( 𝐴𝑘 ) ∈ V
13 10 11 12 fvmpt ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) ‘ 𝑘 ) = ( 𝐴𝑘 ) )
14 9 13 syl ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) ‘ 𝑘 ) = ( 𝐴𝑘 ) )
15 simpr ( ( 𝜑𝐴 = 0 ) → 𝐴 = 0 )
16 15 oveq1d ( ( 𝜑𝐴 = 0 ) → ( 𝐴𝑘 ) = ( 0 ↑ 𝑘 ) )
17 14 16 sylan9eqr ( ( ( 𝜑𝐴 = 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) ‘ 𝑘 ) = ( 0 ↑ 𝑘 ) )
18 0exp ( 𝑘 ∈ ℕ → ( 0 ↑ 𝑘 ) = 0 )
19 18 adantl ( ( ( 𝜑𝐴 = 0 ) ∧ 𝑘 ∈ ℕ ) → ( 0 ↑ 𝑘 ) = 0 )
20 17 19 eqtrd ( ( ( 𝜑𝐴 = 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) ‘ 𝑘 ) = 0 )
21 3 4 7 8 20 climconst ( ( 𝜑𝐴 = 0 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) ⇝ 0 )
22 1zzd ( ( 𝜑𝐴 ≠ 0 ) → 1 ∈ ℤ )
23 2 adantr ( ( 𝜑𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) < 1 )
24 absrpcl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ )
25 1 24 sylan ( ( 𝜑𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ )
26 25 reclt1d ( ( 𝜑𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) < 1 ↔ 1 < ( 1 / ( abs ‘ 𝐴 ) ) ) )
27 23 26 mpbid ( ( 𝜑𝐴 ≠ 0 ) → 1 < ( 1 / ( abs ‘ 𝐴 ) ) )
28 1re 1 ∈ ℝ
29 25 rpreccld ( ( 𝜑𝐴 ≠ 0 ) → ( 1 / ( abs ‘ 𝐴 ) ) ∈ ℝ+ )
30 29 rpred ( ( 𝜑𝐴 ≠ 0 ) → ( 1 / ( abs ‘ 𝐴 ) ) ∈ ℝ )
31 difrp ( ( 1 ∈ ℝ ∧ ( 1 / ( abs ‘ 𝐴 ) ) ∈ ℝ ) → ( 1 < ( 1 / ( abs ‘ 𝐴 ) ) ↔ ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ∈ ℝ+ ) )
32 28 30 31 sylancr ( ( 𝜑𝐴 ≠ 0 ) → ( 1 < ( 1 / ( abs ‘ 𝐴 ) ) ↔ ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ∈ ℝ+ ) )
33 27 32 mpbid ( ( 𝜑𝐴 ≠ 0 ) → ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ∈ ℝ+ )
34 33 rpreccld ( ( 𝜑𝐴 ≠ 0 ) → ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) ∈ ℝ+ )
35 34 rpcnd ( ( 𝜑𝐴 ≠ 0 ) → ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) ∈ ℂ )
36 divcnv ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) ⇝ 0 )
37 35 36 syl ( ( 𝜑𝐴 ≠ 0 ) → ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) ⇝ 0 )
38 nnex ℕ ∈ V
39 38 mptex ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ∈ V
40 39 a1i ( ( 𝜑𝐴 ≠ 0 ) → ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ∈ V )
41 oveq2 ( 𝑛 = 𝑘 → ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) = ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) )
42 eqid ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) )
43 ovex ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) ∈ V
44 41 42 43 fvmpt ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) )
45 44 adantl ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) )
46 34 rpred ( ( 𝜑𝐴 ≠ 0 ) → ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) ∈ ℝ )
47 nndivre ( ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) ∈ ℝ )
48 46 47 sylan ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) ∈ ℝ )
49 45 48 eqeltrd ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ )
50 oveq2 ( 𝑛 = 𝑘 → ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )
51 eqid ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) )
52 ovex ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ V
53 50 51 52 fvmpt ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )
54 53 adantl ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )
55 nnz ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ )
56 rpexpcl ( ( ( abs ‘ 𝐴 ) ∈ ℝ+𝑘 ∈ ℤ ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ+ )
57 25 55 56 syl2an ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ+ )
58 54 57 eqeltrd ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ+ )
59 58 rpred ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ )
60 nnrp ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ )
61 rpmulcl ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ∈ ℝ+𝑘 ∈ ℝ+ ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ∈ ℝ+ )
62 33 60 61 syl2an ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ∈ ℝ+ )
63 62 rpred ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ∈ ℝ )
64 peano2re ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ∈ ℝ → ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) + 1 ) ∈ ℝ )
65 63 64 syl ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) + 1 ) ∈ ℝ )
66 rpexpcl ( ( ( 1 / ( abs ‘ 𝐴 ) ) ∈ ℝ+𝑘 ∈ ℤ ) → ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ∈ ℝ+ )
67 29 55 66 syl2an ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ∈ ℝ+ )
68 67 rpred ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ∈ ℝ )
69 63 lep1d ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ≤ ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) + 1 ) )
70 30 adantr ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( 1 / ( abs ‘ 𝐴 ) ) ∈ ℝ )
71 9 adantl ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 )
72 29 rpge0d ( ( 𝜑𝐴 ≠ 0 ) → 0 ≤ ( 1 / ( abs ‘ 𝐴 ) ) )
73 72 adantr ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 1 / ( abs ‘ 𝐴 ) ) )
74 bernneq2 ( ( ( 1 / ( abs ‘ 𝐴 ) ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ ( 1 / ( abs ‘ 𝐴 ) ) ) → ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) + 1 ) ≤ ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) )
75 70 71 73 74 syl3anc ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) + 1 ) ≤ ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) )
76 63 65 68 69 75 letrd ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ≤ ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) )
77 25 rpcnne0d ( ( 𝜑𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ≠ 0 ) )
78 exprec ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ≠ 0 ∧ 𝑘 ∈ ℤ ) → ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) = ( 1 / ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) )
79 78 3expa ( ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ≠ 0 ) ∧ 𝑘 ∈ ℤ ) → ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) = ( 1 / ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) )
80 77 55 79 syl2an ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) = ( 1 / ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) )
81 76 80 breqtrd ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ≤ ( 1 / ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) )
82 62 57 81 lerec2d ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ≤ ( 1 / ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ) )
83 33 rpcnne0d ( ( 𝜑𝐴 ≠ 0 ) → ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ∈ ℂ ∧ ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ≠ 0 ) )
84 nncn ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ )
85 nnne0 ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 )
86 84 85 jca ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) )
87 recdiv2 ( ( ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ∈ ℂ ∧ ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ≠ 0 ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ) → ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) = ( 1 / ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ) )
88 83 86 87 syl2an ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) = ( 1 / ( ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) · 𝑘 ) ) )
89 82 88 breqtrrd ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ≤ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑘 ) )
90 89 54 45 3brtr4d ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 1 / ( abs ‘ 𝐴 ) ) − 1 ) ) / 𝑛 ) ) ‘ 𝑘 ) )
91 58 rpge0d ( ( ( 𝜑𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) )
92 3 22 37 40 49 59 90 91 climsqz2 ( ( 𝜑𝐴 ≠ 0 ) → ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ⇝ 0 )
93 1zzd ( 𝜑 → 1 ∈ ℤ )
94 6 a1i ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) ∈ V )
95 39 a1i ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ∈ V )
96 9 adantl ( ( 𝜑𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 )
97 96 13 syl ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) ‘ 𝑘 ) = ( 𝐴𝑘 ) )
98 expcl ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴𝑘 ) ∈ ℂ )
99 1 9 98 syl2an ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐴𝑘 ) ∈ ℂ )
100 97 99 eqeltrd ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) ‘ 𝑘 ) ∈ ℂ )
101 absexp ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( 𝐴𝑘 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )
102 1 9 101 syl2an ( ( 𝜑𝑘 ∈ ℕ ) → ( abs ‘ ( 𝐴𝑘 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )
103 97 fveq2d ( ( 𝜑𝑘 ∈ ℕ ) → ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) ‘ 𝑘 ) ) = ( abs ‘ ( 𝐴𝑘 ) ) )
104 53 adantl ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )
105 102 103 104 3eqtr4rd ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) ‘ 𝑘 ) ) )
106 3 93 94 95 100 105 climabs0 ( 𝜑 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) ⇝ 0 ↔ ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ⇝ 0 ) )
107 106 biimpar ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ⇝ 0 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) ⇝ 0 )
108 92 107 syldan ( ( 𝜑𝐴 ≠ 0 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) ⇝ 0 )
109 21 108 pm2.61dane ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴𝑛 ) ) ⇝ 0 )