Metamath Proof Explorer


Theorem rpcnne0d

Description: A positive real is a nonzero complex number. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
Assertion rpcnne0d ( 𝜑 → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) )

Proof

Step Hyp Ref Expression
1 rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
2 1 rpcnd ( 𝜑𝐴 ∈ ℂ )
3 1 rpne0d ( 𝜑𝐴 ≠ 0 )
4 2 3 jca ( 𝜑 → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) )