Metamath Proof Explorer


Theorem reclt1d

Description: The reciprocal of a positive number less than 1 is greater than 1. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rpred.1 φA+
Assertion reclt1d φA<11<1A

Proof

Step Hyp Ref Expression
1 rpred.1 φA+
2 1 rpregt0d φA0<A
3 reclt1 A0<AA<11<1A
4 2 3 syl φA<11<1A