Description: Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005) (Revised by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | abslt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll | |
|
2 | 1 | renegcld | |
3 | 1 | recnd | |
4 | abscl | |
|
5 | 3 4 | syl | |
6 | simplr | |
|
7 | leabs | |
|
8 | 2 7 | syl | |
9 | absneg | |
|
10 | 3 9 | syl | |
11 | 8 10 | breqtrd | |
12 | simpr | |
|
13 | 2 5 6 11 12 | lelttrd | |
14 | leabs | |
|
15 | 14 | ad2antrr | |
16 | 1 5 6 15 12 | lelttrd | |
17 | 13 16 | jca | |
18 | 17 | ex | |
19 | absor | |
|
20 | 19 | adantr | |
21 | breq1 | |
|
22 | 21 | biimprd | |
23 | breq1 | |
|
24 | 23 | biimprd | |
25 | 22 24 | jaoa | |
26 | 25 | ancomsd | |
27 | 20 26 | syl | |
28 | 18 27 | impbid | |
29 | ltnegcon1 | |
|
30 | 29 | anbi1d | |
31 | 28 30 | bitrd | |