| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem4.1 |
|- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
| 2 |
|
eleq1 |
|- ( x = B -> ( x e. RR <-> B e. RR ) ) |
| 3 |
2
|
anbi2d |
|- ( x = B -> ( ( ph /\ x e. RR ) <-> ( ph /\ B e. RR ) ) ) |
| 4 |
|
simpl |
|- ( ( x = B /\ t e. T ) -> x = B ) |
| 5 |
4
|
mpteq2dva |
|- ( x = B -> ( t e. T |-> x ) = ( t e. T |-> B ) ) |
| 6 |
5
|
eleq1d |
|- ( x = B -> ( ( t e. T |-> x ) e. A <-> ( t e. T |-> B ) e. A ) ) |
| 7 |
3 6
|
imbi12d |
|- ( x = B -> ( ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A ) <-> ( ( ph /\ B e. RR ) -> ( t e. T |-> B ) e. A ) ) ) |
| 8 |
7 1
|
vtoclg |
|- ( B e. RR -> ( ( ph /\ B e. RR ) -> ( t e. T |-> B ) e. A ) ) |
| 9 |
8
|
anabsi7 |
|- ( ( ph /\ B e. RR ) -> ( t e. T |-> B ) e. A ) |