| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem23.1 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 2 |  | stoweidlem23.2 | ⊢ Ⅎ 𝑡 𝐺 | 
						
							| 3 |  | stoweidlem23.3 | ⊢ 𝐻  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐺 ‘ 𝑍 ) ) ) | 
						
							| 4 |  | stoweidlem23.4 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 5 |  | stoweidlem23.5 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 6 |  | stoweidlem23.6 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 7 |  | stoweidlem23.7 | ⊢ ( 𝜑  →  𝑆  ∈  𝑇 ) | 
						
							| 8 |  | stoweidlem23.8 | ⊢ ( 𝜑  →  𝑍  ∈  𝑇 ) | 
						
							| 9 |  | stoweidlem23.9 | ⊢ ( 𝜑  →  𝐺  ∈  𝐴 ) | 
						
							| 10 |  | stoweidlem23.10 | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑆 )  ≠  ( 𝐺 ‘ 𝑍 ) ) | 
						
							| 11 | 9 | ancli | ⊢ ( 𝜑  →  ( 𝜑  ∧  𝐺  ∈  𝐴 ) ) | 
						
							| 12 |  | eleq1 | ⊢ ( 𝑓  =  𝐺  →  ( 𝑓  ∈  𝐴  ↔  𝐺  ∈  𝐴 ) ) | 
						
							| 13 | 12 | anbi2d | ⊢ ( 𝑓  =  𝐺  →  ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝐺  ∈  𝐴 ) ) ) | 
						
							| 14 |  | feq1 | ⊢ ( 𝑓  =  𝐺  →  ( 𝑓 : 𝑇 ⟶ ℝ  ↔  𝐺 : 𝑇 ⟶ ℝ ) ) | 
						
							| 15 | 13 14 | imbi12d | ⊢ ( 𝑓  =  𝐺  →  ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ )  ↔  ( ( 𝜑  ∧  𝐺  ∈  𝐴 )  →  𝐺 : 𝑇 ⟶ ℝ ) ) ) | 
						
							| 16 | 15 4 | vtoclg | ⊢ ( 𝐺  ∈  𝐴  →  ( ( 𝜑  ∧  𝐺  ∈  𝐴 )  →  𝐺 : 𝑇 ⟶ ℝ ) ) | 
						
							| 17 | 9 11 16 | sylc | ⊢ ( 𝜑  →  𝐺 : 𝑇 ⟶ ℝ ) | 
						
							| 18 | 17 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 19 | 18 | recnd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 20 | 17 8 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 22 | 21 | recnd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑍 )  ∈  ℂ ) | 
						
							| 23 | 19 22 | negsubd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐺 ‘ 𝑡 )  +  - ( 𝐺 ‘ 𝑍 ) )  =  ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐺 ‘ 𝑍 ) ) ) | 
						
							| 24 | 1 23 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 𝑡 )  +  - ( 𝐺 ‘ 𝑍 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐺 ‘ 𝑍 ) ) ) ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  𝑇 ) | 
						
							| 26 | 20 | renegcld | ⊢ ( 𝜑  →  - ( 𝐺 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  - ( 𝐺 ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 28 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  - ( 𝐺 ‘ 𝑍 ) )  =  ( 𝑡  ∈  𝑇  ↦  - ( 𝐺 ‘ 𝑍 ) ) | 
						
							| 29 | 28 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  - ( 𝐺 ‘ 𝑍 )  ∈  ℝ )  →  ( ( 𝑡  ∈  𝑇  ↦  - ( 𝐺 ‘ 𝑍 ) ) ‘ 𝑡 )  =  - ( 𝐺 ‘ 𝑍 ) ) | 
						
							| 30 | 25 27 29 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑡  ∈  𝑇  ↦  - ( 𝐺 ‘ 𝑍 ) ) ‘ 𝑡 )  =  - ( 𝐺 ‘ 𝑍 ) ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐺 ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  - ( 𝐺 ‘ 𝑍 ) ) ‘ 𝑡 ) )  =  ( ( 𝐺 ‘ 𝑡 )  +  - ( 𝐺 ‘ 𝑍 ) ) ) | 
						
							| 32 | 1 31 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  - ( 𝐺 ‘ 𝑍 ) ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 𝑡 )  +  - ( 𝐺 ‘ 𝑍 ) ) ) ) | 
						
							| 33 | 26 | ancli | ⊢ ( 𝜑  →  ( 𝜑  ∧  - ( 𝐺 ‘ 𝑍 )  ∈  ℝ ) ) | 
						
							| 34 |  | eleq1 | ⊢ ( 𝑥  =  - ( 𝐺 ‘ 𝑍 )  →  ( 𝑥  ∈  ℝ  ↔  - ( 𝐺 ‘ 𝑍 )  ∈  ℝ ) ) | 
						
							| 35 | 34 | anbi2d | ⊢ ( 𝑥  =  - ( 𝐺 ‘ 𝑍 )  →  ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ↔  ( 𝜑  ∧  - ( 𝐺 ‘ 𝑍 )  ∈  ℝ ) ) ) | 
						
							| 36 |  | nfcv | ⊢ Ⅎ 𝑡 𝑍 | 
						
							| 37 | 2 36 | nffv | ⊢ Ⅎ 𝑡 ( 𝐺 ‘ 𝑍 ) | 
						
							| 38 | 37 | nfneg | ⊢ Ⅎ 𝑡 - ( 𝐺 ‘ 𝑍 ) | 
						
							| 39 | 38 | nfeq2 | ⊢ Ⅎ 𝑡 𝑥  =  - ( 𝐺 ‘ 𝑍 ) | 
						
							| 40 |  | simpl | ⊢ ( ( 𝑥  =  - ( 𝐺 ‘ 𝑍 )  ∧  𝑡  ∈  𝑇 )  →  𝑥  =  - ( 𝐺 ‘ 𝑍 ) ) | 
						
							| 41 | 39 40 | mpteq2da | ⊢ ( 𝑥  =  - ( 𝐺 ‘ 𝑍 )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  =  ( 𝑡  ∈  𝑇  ↦  - ( 𝐺 ‘ 𝑍 ) ) ) | 
						
							| 42 | 41 | eleq1d | ⊢ ( 𝑥  =  - ( 𝐺 ‘ 𝑍 )  →  ( ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  - ( 𝐺 ‘ 𝑍 ) )  ∈  𝐴 ) ) | 
						
							| 43 | 35 42 | imbi12d | ⊢ ( 𝑥  =  - ( 𝐺 ‘ 𝑍 )  →  ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 )  ↔  ( ( 𝜑  ∧  - ( 𝐺 ‘ 𝑍 )  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  - ( 𝐺 ‘ 𝑍 ) )  ∈  𝐴 ) ) ) | 
						
							| 44 | 43 6 | vtoclg | ⊢ ( - ( 𝐺 ‘ 𝑍 )  ∈  ℝ  →  ( ( 𝜑  ∧  - ( 𝐺 ‘ 𝑍 )  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  - ( 𝐺 ‘ 𝑍 ) )  ∈  𝐴 ) ) | 
						
							| 45 | 26 33 44 | sylc | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  - ( 𝐺 ‘ 𝑍 ) )  ∈  𝐴 ) | 
						
							| 46 |  | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  - ( 𝐺 ‘ 𝑍 ) ) | 
						
							| 47 | 5 2 46 | stoweidlem8 | ⊢ ( ( 𝜑  ∧  𝐺  ∈  𝐴  ∧  ( 𝑡  ∈  𝑇  ↦  - ( 𝐺 ‘ 𝑍 ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  - ( 𝐺 ‘ 𝑍 ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 48 | 9 45 47 | mpd3an23 | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  - ( 𝐺 ‘ 𝑍 ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 49 | 32 48 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 𝑡 )  +  - ( 𝐺 ‘ 𝑍 ) ) )  ∈  𝐴 ) | 
						
							| 50 | 24 49 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐺 ‘ 𝑍 ) ) )  ∈  𝐴 ) | 
						
							| 51 | 3 50 | eqeltrid | ⊢ ( 𝜑  →  𝐻  ∈  𝐴 ) | 
						
							| 52 | 17 7 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑆 )  ∈  ℝ ) | 
						
							| 53 | 52 | recnd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑆 )  ∈  ℂ ) | 
						
							| 54 | 20 | recnd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑍 )  ∈  ℂ ) | 
						
							| 55 | 53 54 10 | subne0d | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑆 )  −  ( 𝐺 ‘ 𝑍 ) )  ≠  0 ) | 
						
							| 56 | 52 20 | resubcld | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑆 )  −  ( 𝐺 ‘ 𝑍 ) )  ∈  ℝ ) | 
						
							| 57 |  | nfcv | ⊢ Ⅎ 𝑡 𝑆 | 
						
							| 58 | 2 57 | nffv | ⊢ Ⅎ 𝑡 ( 𝐺 ‘ 𝑆 ) | 
						
							| 59 |  | nfcv | ⊢ Ⅎ 𝑡  − | 
						
							| 60 | 58 59 37 | nfov | ⊢ Ⅎ 𝑡 ( ( 𝐺 ‘ 𝑆 )  −  ( 𝐺 ‘ 𝑍 ) ) | 
						
							| 61 |  | fveq2 | ⊢ ( 𝑡  =  𝑆  →  ( 𝐺 ‘ 𝑡 )  =  ( 𝐺 ‘ 𝑆 ) ) | 
						
							| 62 | 61 | oveq1d | ⊢ ( 𝑡  =  𝑆  →  ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐺 ‘ 𝑍 ) )  =  ( ( 𝐺 ‘ 𝑆 )  −  ( 𝐺 ‘ 𝑍 ) ) ) | 
						
							| 63 | 57 60 62 3 | fvmptf | ⊢ ( ( 𝑆  ∈  𝑇  ∧  ( ( 𝐺 ‘ 𝑆 )  −  ( 𝐺 ‘ 𝑍 ) )  ∈  ℝ )  →  ( 𝐻 ‘ 𝑆 )  =  ( ( 𝐺 ‘ 𝑆 )  −  ( 𝐺 ‘ 𝑍 ) ) ) | 
						
							| 64 | 7 56 63 | syl2anc | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑆 )  =  ( ( 𝐺 ‘ 𝑆 )  −  ( 𝐺 ‘ 𝑍 ) ) ) | 
						
							| 65 | 20 20 | resubcld | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑍 )  −  ( 𝐺 ‘ 𝑍 ) )  ∈  ℝ ) | 
						
							| 66 | 37 59 37 | nfov | ⊢ Ⅎ 𝑡 ( ( 𝐺 ‘ 𝑍 )  −  ( 𝐺 ‘ 𝑍 ) ) | 
						
							| 67 |  | fveq2 | ⊢ ( 𝑡  =  𝑍  →  ( 𝐺 ‘ 𝑡 )  =  ( 𝐺 ‘ 𝑍 ) ) | 
						
							| 68 | 67 | oveq1d | ⊢ ( 𝑡  =  𝑍  →  ( ( 𝐺 ‘ 𝑡 )  −  ( 𝐺 ‘ 𝑍 ) )  =  ( ( 𝐺 ‘ 𝑍 )  −  ( 𝐺 ‘ 𝑍 ) ) ) | 
						
							| 69 | 36 66 68 3 | fvmptf | ⊢ ( ( 𝑍  ∈  𝑇  ∧  ( ( 𝐺 ‘ 𝑍 )  −  ( 𝐺 ‘ 𝑍 ) )  ∈  ℝ )  →  ( 𝐻 ‘ 𝑍 )  =  ( ( 𝐺 ‘ 𝑍 )  −  ( 𝐺 ‘ 𝑍 ) ) ) | 
						
							| 70 | 8 65 69 | syl2anc | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑍 )  =  ( ( 𝐺 ‘ 𝑍 )  −  ( 𝐺 ‘ 𝑍 ) ) ) | 
						
							| 71 | 54 | subidd | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑍 )  −  ( 𝐺 ‘ 𝑍 ) )  =  0 ) | 
						
							| 72 | 70 71 | eqtrd | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑍 )  =  0 ) | 
						
							| 73 | 55 64 72 | 3netr4d | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑆 )  ≠  ( 𝐻 ‘ 𝑍 ) ) | 
						
							| 74 | 51 73 72 | 3jca | ⊢ ( 𝜑  →  ( 𝐻  ∈  𝐴  ∧  ( 𝐻 ‘ 𝑆 )  ≠  ( 𝐻 ‘ 𝑍 )  ∧  ( 𝐻 ‘ 𝑍 )  =  0 ) ) |