| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem23.1 |
|
| 2 |
|
stoweidlem23.2 |
|
| 3 |
|
stoweidlem23.3 |
|
| 4 |
|
stoweidlem23.4 |
|
| 5 |
|
stoweidlem23.5 |
|
| 6 |
|
stoweidlem23.6 |
|
| 7 |
|
stoweidlem23.7 |
|
| 8 |
|
stoweidlem23.8 |
|
| 9 |
|
stoweidlem23.9 |
|
| 10 |
|
stoweidlem23.10 |
|
| 11 |
9
|
ancli |
|
| 12 |
|
eleq1 |
|
| 13 |
12
|
anbi2d |
|
| 14 |
|
feq1 |
|
| 15 |
13 14
|
imbi12d |
|
| 16 |
15 4
|
vtoclg |
|
| 17 |
9 11 16
|
sylc |
|
| 18 |
17
|
ffvelcdmda |
|
| 19 |
18
|
recnd |
|
| 20 |
17 8
|
ffvelcdmd |
|
| 21 |
20
|
adantr |
|
| 22 |
21
|
recnd |
|
| 23 |
19 22
|
negsubd |
|
| 24 |
1 23
|
mpteq2da |
|
| 25 |
|
simpr |
|
| 26 |
20
|
renegcld |
|
| 27 |
26
|
adantr |
|
| 28 |
|
eqid |
|
| 29 |
28
|
fvmpt2 |
|
| 30 |
25 27 29
|
syl2anc |
|
| 31 |
30
|
oveq2d |
|
| 32 |
1 31
|
mpteq2da |
|
| 33 |
26
|
ancli |
|
| 34 |
|
eleq1 |
|
| 35 |
34
|
anbi2d |
|
| 36 |
|
nfcv |
|
| 37 |
2 36
|
nffv |
|
| 38 |
37
|
nfneg |
|
| 39 |
38
|
nfeq2 |
|
| 40 |
|
simpl |
|
| 41 |
39 40
|
mpteq2da |
|
| 42 |
41
|
eleq1d |
|
| 43 |
35 42
|
imbi12d |
|
| 44 |
43 6
|
vtoclg |
|
| 45 |
26 33 44
|
sylc |
|
| 46 |
|
nfmpt1 |
|
| 47 |
5 2 46
|
stoweidlem8 |
|
| 48 |
9 45 47
|
mpd3an23 |
|
| 49 |
32 48
|
eqeltrrd |
|
| 50 |
24 49
|
eqeltrrd |
|
| 51 |
3 50
|
eqeltrid |
|
| 52 |
17 7
|
ffvelcdmd |
|
| 53 |
52
|
recnd |
|
| 54 |
20
|
recnd |
|
| 55 |
53 54 10
|
subne0d |
|
| 56 |
52 20
|
resubcld |
|
| 57 |
|
nfcv |
|
| 58 |
2 57
|
nffv |
|
| 59 |
|
nfcv |
|
| 60 |
58 59 37
|
nfov |
|
| 61 |
|
fveq2 |
|
| 62 |
61
|
oveq1d |
|
| 63 |
57 60 62 3
|
fvmptf |
|
| 64 |
7 56 63
|
syl2anc |
|
| 65 |
20 20
|
resubcld |
|
| 66 |
37 59 37
|
nfov |
|
| 67 |
|
fveq2 |
|
| 68 |
67
|
oveq1d |
|
| 69 |
36 66 68 3
|
fvmptf |
|
| 70 |
8 65 69
|
syl2anc |
|
| 71 |
54
|
subidd |
|
| 72 |
70 71
|
eqtrd |
|
| 73 |
55 64 72
|
3netr4d |
|
| 74 |
51 73 72
|
3jca |
|