Metamath Proof Explorer


Theorem stoweidlem24

Description: This lemma proves that for n sufficiently large, q_n( t ) > ( 1 - epsilon ), for all t in V : see Lemma 1 BrosowskiDeutsh p. 90, (at the bottom of page 90). Q is used to represent q_n in the paper, N to represent n in the paper, K to represent k , D to represent δ, and E to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem24.1 V = t T | P t < D 2
stoweidlem24.2 Q = t T 1 P t N K N
stoweidlem24.3 φ P : T
stoweidlem24.4 φ N 0
stoweidlem24.5 φ K 0
stoweidlem24.6 φ D +
stoweidlem24.8 φ E +
stoweidlem24.9 φ 1 E < 1 K D 2 N
stoweidlem24.10 φ t T 0 P t P t 1
Assertion stoweidlem24 φ t V 1 E < Q t

Proof

Step Hyp Ref Expression
1 stoweidlem24.1 V = t T | P t < D 2
2 stoweidlem24.2 Q = t T 1 P t N K N
3 stoweidlem24.3 φ P : T
4 stoweidlem24.4 φ N 0
5 stoweidlem24.5 φ K 0
6 stoweidlem24.6 φ D +
7 stoweidlem24.8 φ E +
8 stoweidlem24.9 φ 1 E < 1 K D 2 N
9 stoweidlem24.10 φ t T 0 P t P t 1
10 1red φ t V 1
11 7 rpred φ E
12 11 adantr φ t V E
13 10 12 resubcld φ t V 1 E
14 5 nn0red φ K
15 14 adantr φ t V K
16 3 adantr φ t V P : T
17 1 rabeq2i t V t T P t < D 2
18 17 simplbi t V t T
19 18 adantl φ t V t T
20 16 19 ffvelrnd φ t V P t
21 15 20 remulcld φ t V K P t
22 4 adantr φ t V N 0
23 21 22 reexpcld φ t V K P t N
24 10 23 resubcld φ t V 1 K P t N
25 20 22 reexpcld φ t V P t N
26 10 25 resubcld φ t V 1 P t N
27 5 4 jca φ K 0 N 0
28 27 adantr φ t V K 0 N 0
29 nn0expcl K 0 N 0 K N 0
30 28 29 syl φ t V K N 0
31 26 30 reexpcld φ t V 1 P t N K N
32 1red φ 1
33 6 rpred φ D
34 14 33 remulcld φ K D
35 34 rehalfcld φ K D 2
36 35 4 reexpcld φ K D 2 N
37 32 36 resubcld φ 1 K D 2 N
38 37 adantr φ t V 1 K D 2 N
39 8 adantr φ t V 1 E < 1 K D 2 N
40 36 adantr φ t V K D 2 N
41 35 adantr φ t V K D 2
42 5 nn0ge0d φ 0 K
43 14 42 jca φ K 0 K
44 43 adantr φ t V K 0 K
45 9 r19.21bi φ t T 0 P t P t 1
46 45 simpld φ t T 0 P t
47 18 46 sylan2 φ t V 0 P t
48 mulge0 K 0 K P t 0 P t 0 K P t
49 44 20 47 48 syl12anc φ t V 0 K P t
50 33 rehalfcld φ D 2
51 50 adantr φ t V D 2
52 17 simprbi t V P t < D 2
53 52 adantl φ t V P t < D 2
54 20 51 53 ltled φ t V P t D 2
55 lemul2a P t D 2 K 0 K P t D 2 K P t K D 2
56 20 51 44 54 55 syl31anc φ t V K P t K D 2
57 5 nn0cnd φ K
58 57 adantr φ t V K
59 6 rpcnd φ D
60 59 adantr φ t V D
61 2cnne0 2 2 0
62 61 a1i φ t V 2 2 0
63 divass K D 2 2 0 K D 2 = K D 2
64 58 60 62 63 syl3anc φ t V K D 2 = K D 2
65 56 64 breqtrrd φ t V K P t K D 2
66 leexp1a K P t K D 2 N 0 0 K P t K P t K D 2 K P t N K D 2 N
67 21 41 22 49 65 66 syl32anc φ t V K P t N K D 2 N
68 23 40 10 67 lesub2dd φ t V 1 K D 2 N 1 K P t N
69 13 38 24 39 68 ltletrd φ t V 1 E < 1 K P t N
70 20 recnd φ t V P t
71 58 70 22 mulexpd φ t V K P t N = K N P t N
72 71 eqcomd φ t V K N P t N = K P t N
73 72 oveq2d φ t V 1 K N P t N = 1 K P t N
74 18 45 sylan2 φ t V 0 P t P t 1
75 74 simprd φ t V P t 1
76 exple1 P t 0 P t P t 1 N 0 P t N 1
77 20 47 75 22 76 syl31anc φ t V P t N 1
78 stoweidlem10 P t N K N 0 P t N 1 1 K N P t N 1 P t N K N
79 25 30 77 78 syl3anc φ t V 1 K N P t N 1 P t N K N
80 73 79 eqbrtrrd φ t V 1 K P t N 1 P t N K N
81 13 24 31 69 80 ltletrd φ t V 1 E < 1 P t N K N
82 2 3 4 5 stoweidlem12 φ t T Q t = 1 P t N K N
83 18 82 sylan2 φ t V Q t = 1 P t N K N
84 81 83 breqtrrd φ t V 1 E < Q t