Metamath Proof Explorer


Theorem stoweidlem24

Description: This lemma proves that for n sufficiently large, q_n( t ) > ( 1 - epsilon ), for all t in V : see Lemma 1 BrosowskiDeutsh p. 90, (at the bottom of page 90). Q is used to represent q_n in the paper, N to represent n in the paper, K to represent k , D to represent δ, and E to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem24.1 V=tT|Pt<D2
stoweidlem24.2 Q=tT1PtNKN
stoweidlem24.3 φP:T
stoweidlem24.4 φN0
stoweidlem24.5 φK0
stoweidlem24.6 φD+
stoweidlem24.8 φE+
stoweidlem24.9 φ1E<1KD2N
stoweidlem24.10 φtT0PtPt1
Assertion stoweidlem24 φtV1E<Qt

Proof

Step Hyp Ref Expression
1 stoweidlem24.1 V=tT|Pt<D2
2 stoweidlem24.2 Q=tT1PtNKN
3 stoweidlem24.3 φP:T
4 stoweidlem24.4 φN0
5 stoweidlem24.5 φK0
6 stoweidlem24.6 φD+
7 stoweidlem24.8 φE+
8 stoweidlem24.9 φ1E<1KD2N
9 stoweidlem24.10 φtT0PtPt1
10 1red φtV1
11 7 rpred φE
12 11 adantr φtVE
13 10 12 resubcld φtV1E
14 5 nn0red φK
15 14 adantr φtVK
16 3 adantr φtVP:T
17 1 reqabi tVtTPt<D2
18 17 simplbi tVtT
19 18 adantl φtVtT
20 16 19 ffvelcdmd φtVPt
21 15 20 remulcld φtVKPt
22 4 adantr φtVN0
23 21 22 reexpcld φtVKPtN
24 10 23 resubcld φtV1KPtN
25 20 22 reexpcld φtVPtN
26 10 25 resubcld φtV1PtN
27 5 4 jca φK0N0
28 27 adantr φtVK0N0
29 nn0expcl K0N0KN0
30 28 29 syl φtVKN0
31 26 30 reexpcld φtV1PtNKN
32 1red φ1
33 6 rpred φD
34 14 33 remulcld φKD
35 34 rehalfcld φKD2
36 35 4 reexpcld φKD2N
37 32 36 resubcld φ1KD2N
38 37 adantr φtV1KD2N
39 8 adantr φtV1E<1KD2N
40 36 adantr φtVKD2N
41 35 adantr φtVKD2
42 5 nn0ge0d φ0K
43 14 42 jca φK0K
44 43 adantr φtVK0K
45 9 r19.21bi φtT0PtPt1
46 45 simpld φtT0Pt
47 18 46 sylan2 φtV0Pt
48 mulge0 K0KPt0Pt0KPt
49 44 20 47 48 syl12anc φtV0KPt
50 33 rehalfcld φD2
51 50 adantr φtVD2
52 17 simprbi tVPt<D2
53 52 adantl φtVPt<D2
54 20 51 53 ltled φtVPtD2
55 lemul2a PtD2K0KPtD2KPtKD2
56 20 51 44 54 55 syl31anc φtVKPtKD2
57 5 nn0cnd φK
58 57 adantr φtVK
59 6 rpcnd φD
60 59 adantr φtVD
61 2cnne0 220
62 61 a1i φtV220
63 divass KD220KD2=KD2
64 58 60 62 63 syl3anc φtVKD2=KD2
65 56 64 breqtrrd φtVKPtKD2
66 leexp1a KPtKD2N00KPtKPtKD2KPtNKD2N
67 21 41 22 49 65 66 syl32anc φtVKPtNKD2N
68 23 40 10 67 lesub2dd φtV1KD2N1KPtN
69 13 38 24 39 68 ltletrd φtV1E<1KPtN
70 20 recnd φtVPt
71 58 70 22 mulexpd φtVKPtN=KNPtN
72 71 eqcomd φtVKNPtN=KPtN
73 72 oveq2d φtV1KNPtN=1KPtN
74 18 45 sylan2 φtV0PtPt1
75 74 simprd φtVPt1
76 exple1 Pt0PtPt1N0PtN1
77 20 47 75 22 76 syl31anc φtVPtN1
78 stoweidlem10 PtNKN0PtN11KNPtN1PtNKN
79 25 30 77 78 syl3anc φtV1KNPtN1PtNKN
80 73 79 eqbrtrrd φtV1KPtN1PtNKN
81 13 24 31 69 80 ltletrd φtV1E<1PtNKN
82 2 3 4 5 stoweidlem12 φtTQt=1PtNKN
83 18 82 sylan2 φtVQt=1PtNKN
84 81 83 breqtrrd φtV1E<Qt