| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem24.1 |
|- V = { t e. T | ( P ` t ) < ( D / 2 ) } |
| 2 |
|
stoweidlem24.2 |
|- Q = ( t e. T |-> ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) ) |
| 3 |
|
stoweidlem24.3 |
|- ( ph -> P : T --> RR ) |
| 4 |
|
stoweidlem24.4 |
|- ( ph -> N e. NN0 ) |
| 5 |
|
stoweidlem24.5 |
|- ( ph -> K e. NN0 ) |
| 6 |
|
stoweidlem24.6 |
|- ( ph -> D e. RR+ ) |
| 7 |
|
stoweidlem24.8 |
|- ( ph -> E e. RR+ ) |
| 8 |
|
stoweidlem24.9 |
|- ( ph -> ( 1 - E ) < ( 1 - ( ( ( K x. D ) / 2 ) ^ N ) ) ) |
| 9 |
|
stoweidlem24.10 |
|- ( ph -> A. t e. T ( 0 <_ ( P ` t ) /\ ( P ` t ) <_ 1 ) ) |
| 10 |
|
1red |
|- ( ( ph /\ t e. V ) -> 1 e. RR ) |
| 11 |
7
|
rpred |
|- ( ph -> E e. RR ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ t e. V ) -> E e. RR ) |
| 13 |
10 12
|
resubcld |
|- ( ( ph /\ t e. V ) -> ( 1 - E ) e. RR ) |
| 14 |
5
|
nn0red |
|- ( ph -> K e. RR ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ t e. V ) -> K e. RR ) |
| 16 |
3
|
adantr |
|- ( ( ph /\ t e. V ) -> P : T --> RR ) |
| 17 |
1
|
reqabi |
|- ( t e. V <-> ( t e. T /\ ( P ` t ) < ( D / 2 ) ) ) |
| 18 |
17
|
simplbi |
|- ( t e. V -> t e. T ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ t e. V ) -> t e. T ) |
| 20 |
16 19
|
ffvelcdmd |
|- ( ( ph /\ t e. V ) -> ( P ` t ) e. RR ) |
| 21 |
15 20
|
remulcld |
|- ( ( ph /\ t e. V ) -> ( K x. ( P ` t ) ) e. RR ) |
| 22 |
4
|
adantr |
|- ( ( ph /\ t e. V ) -> N e. NN0 ) |
| 23 |
21 22
|
reexpcld |
|- ( ( ph /\ t e. V ) -> ( ( K x. ( P ` t ) ) ^ N ) e. RR ) |
| 24 |
10 23
|
resubcld |
|- ( ( ph /\ t e. V ) -> ( 1 - ( ( K x. ( P ` t ) ) ^ N ) ) e. RR ) |
| 25 |
20 22
|
reexpcld |
|- ( ( ph /\ t e. V ) -> ( ( P ` t ) ^ N ) e. RR ) |
| 26 |
10 25
|
resubcld |
|- ( ( ph /\ t e. V ) -> ( 1 - ( ( P ` t ) ^ N ) ) e. RR ) |
| 27 |
5 4
|
jca |
|- ( ph -> ( K e. NN0 /\ N e. NN0 ) ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ t e. V ) -> ( K e. NN0 /\ N e. NN0 ) ) |
| 29 |
|
nn0expcl |
|- ( ( K e. NN0 /\ N e. NN0 ) -> ( K ^ N ) e. NN0 ) |
| 30 |
28 29
|
syl |
|- ( ( ph /\ t e. V ) -> ( K ^ N ) e. NN0 ) |
| 31 |
26 30
|
reexpcld |
|- ( ( ph /\ t e. V ) -> ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) e. RR ) |
| 32 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 33 |
6
|
rpred |
|- ( ph -> D e. RR ) |
| 34 |
14 33
|
remulcld |
|- ( ph -> ( K x. D ) e. RR ) |
| 35 |
34
|
rehalfcld |
|- ( ph -> ( ( K x. D ) / 2 ) e. RR ) |
| 36 |
35 4
|
reexpcld |
|- ( ph -> ( ( ( K x. D ) / 2 ) ^ N ) e. RR ) |
| 37 |
32 36
|
resubcld |
|- ( ph -> ( 1 - ( ( ( K x. D ) / 2 ) ^ N ) ) e. RR ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ t e. V ) -> ( 1 - ( ( ( K x. D ) / 2 ) ^ N ) ) e. RR ) |
| 39 |
8
|
adantr |
|- ( ( ph /\ t e. V ) -> ( 1 - E ) < ( 1 - ( ( ( K x. D ) / 2 ) ^ N ) ) ) |
| 40 |
36
|
adantr |
|- ( ( ph /\ t e. V ) -> ( ( ( K x. D ) / 2 ) ^ N ) e. RR ) |
| 41 |
35
|
adantr |
|- ( ( ph /\ t e. V ) -> ( ( K x. D ) / 2 ) e. RR ) |
| 42 |
5
|
nn0ge0d |
|- ( ph -> 0 <_ K ) |
| 43 |
14 42
|
jca |
|- ( ph -> ( K e. RR /\ 0 <_ K ) ) |
| 44 |
43
|
adantr |
|- ( ( ph /\ t e. V ) -> ( K e. RR /\ 0 <_ K ) ) |
| 45 |
9
|
r19.21bi |
|- ( ( ph /\ t e. T ) -> ( 0 <_ ( P ` t ) /\ ( P ` t ) <_ 1 ) ) |
| 46 |
45
|
simpld |
|- ( ( ph /\ t e. T ) -> 0 <_ ( P ` t ) ) |
| 47 |
18 46
|
sylan2 |
|- ( ( ph /\ t e. V ) -> 0 <_ ( P ` t ) ) |
| 48 |
|
mulge0 |
|- ( ( ( K e. RR /\ 0 <_ K ) /\ ( ( P ` t ) e. RR /\ 0 <_ ( P ` t ) ) ) -> 0 <_ ( K x. ( P ` t ) ) ) |
| 49 |
44 20 47 48
|
syl12anc |
|- ( ( ph /\ t e. V ) -> 0 <_ ( K x. ( P ` t ) ) ) |
| 50 |
33
|
rehalfcld |
|- ( ph -> ( D / 2 ) e. RR ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ t e. V ) -> ( D / 2 ) e. RR ) |
| 52 |
17
|
simprbi |
|- ( t e. V -> ( P ` t ) < ( D / 2 ) ) |
| 53 |
52
|
adantl |
|- ( ( ph /\ t e. V ) -> ( P ` t ) < ( D / 2 ) ) |
| 54 |
20 51 53
|
ltled |
|- ( ( ph /\ t e. V ) -> ( P ` t ) <_ ( D / 2 ) ) |
| 55 |
|
lemul2a |
|- ( ( ( ( P ` t ) e. RR /\ ( D / 2 ) e. RR /\ ( K e. RR /\ 0 <_ K ) ) /\ ( P ` t ) <_ ( D / 2 ) ) -> ( K x. ( P ` t ) ) <_ ( K x. ( D / 2 ) ) ) |
| 56 |
20 51 44 54 55
|
syl31anc |
|- ( ( ph /\ t e. V ) -> ( K x. ( P ` t ) ) <_ ( K x. ( D / 2 ) ) ) |
| 57 |
5
|
nn0cnd |
|- ( ph -> K e. CC ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ t e. V ) -> K e. CC ) |
| 59 |
6
|
rpcnd |
|- ( ph -> D e. CC ) |
| 60 |
59
|
adantr |
|- ( ( ph /\ t e. V ) -> D e. CC ) |
| 61 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
| 62 |
61
|
a1i |
|- ( ( ph /\ t e. V ) -> ( 2 e. CC /\ 2 =/= 0 ) ) |
| 63 |
|
divass |
|- ( ( K e. CC /\ D e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( K x. D ) / 2 ) = ( K x. ( D / 2 ) ) ) |
| 64 |
58 60 62 63
|
syl3anc |
|- ( ( ph /\ t e. V ) -> ( ( K x. D ) / 2 ) = ( K x. ( D / 2 ) ) ) |
| 65 |
56 64
|
breqtrrd |
|- ( ( ph /\ t e. V ) -> ( K x. ( P ` t ) ) <_ ( ( K x. D ) / 2 ) ) |
| 66 |
|
leexp1a |
|- ( ( ( ( K x. ( P ` t ) ) e. RR /\ ( ( K x. D ) / 2 ) e. RR /\ N e. NN0 ) /\ ( 0 <_ ( K x. ( P ` t ) ) /\ ( K x. ( P ` t ) ) <_ ( ( K x. D ) / 2 ) ) ) -> ( ( K x. ( P ` t ) ) ^ N ) <_ ( ( ( K x. D ) / 2 ) ^ N ) ) |
| 67 |
21 41 22 49 65 66
|
syl32anc |
|- ( ( ph /\ t e. V ) -> ( ( K x. ( P ` t ) ) ^ N ) <_ ( ( ( K x. D ) / 2 ) ^ N ) ) |
| 68 |
23 40 10 67
|
lesub2dd |
|- ( ( ph /\ t e. V ) -> ( 1 - ( ( ( K x. D ) / 2 ) ^ N ) ) <_ ( 1 - ( ( K x. ( P ` t ) ) ^ N ) ) ) |
| 69 |
13 38 24 39 68
|
ltletrd |
|- ( ( ph /\ t e. V ) -> ( 1 - E ) < ( 1 - ( ( K x. ( P ` t ) ) ^ N ) ) ) |
| 70 |
20
|
recnd |
|- ( ( ph /\ t e. V ) -> ( P ` t ) e. CC ) |
| 71 |
58 70 22
|
mulexpd |
|- ( ( ph /\ t e. V ) -> ( ( K x. ( P ` t ) ) ^ N ) = ( ( K ^ N ) x. ( ( P ` t ) ^ N ) ) ) |
| 72 |
71
|
eqcomd |
|- ( ( ph /\ t e. V ) -> ( ( K ^ N ) x. ( ( P ` t ) ^ N ) ) = ( ( K x. ( P ` t ) ) ^ N ) ) |
| 73 |
72
|
oveq2d |
|- ( ( ph /\ t e. V ) -> ( 1 - ( ( K ^ N ) x. ( ( P ` t ) ^ N ) ) ) = ( 1 - ( ( K x. ( P ` t ) ) ^ N ) ) ) |
| 74 |
18 45
|
sylan2 |
|- ( ( ph /\ t e. V ) -> ( 0 <_ ( P ` t ) /\ ( P ` t ) <_ 1 ) ) |
| 75 |
74
|
simprd |
|- ( ( ph /\ t e. V ) -> ( P ` t ) <_ 1 ) |
| 76 |
|
exple1 |
|- ( ( ( ( P ` t ) e. RR /\ 0 <_ ( P ` t ) /\ ( P ` t ) <_ 1 ) /\ N e. NN0 ) -> ( ( P ` t ) ^ N ) <_ 1 ) |
| 77 |
20 47 75 22 76
|
syl31anc |
|- ( ( ph /\ t e. V ) -> ( ( P ` t ) ^ N ) <_ 1 ) |
| 78 |
|
stoweidlem10 |
|- ( ( ( ( P ` t ) ^ N ) e. RR /\ ( K ^ N ) e. NN0 /\ ( ( P ` t ) ^ N ) <_ 1 ) -> ( 1 - ( ( K ^ N ) x. ( ( P ` t ) ^ N ) ) ) <_ ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) ) |
| 79 |
25 30 77 78
|
syl3anc |
|- ( ( ph /\ t e. V ) -> ( 1 - ( ( K ^ N ) x. ( ( P ` t ) ^ N ) ) ) <_ ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) ) |
| 80 |
73 79
|
eqbrtrrd |
|- ( ( ph /\ t e. V ) -> ( 1 - ( ( K x. ( P ` t ) ) ^ N ) ) <_ ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) ) |
| 81 |
13 24 31 69 80
|
ltletrd |
|- ( ( ph /\ t e. V ) -> ( 1 - E ) < ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) ) |
| 82 |
2 3 4 5
|
stoweidlem12 |
|- ( ( ph /\ t e. T ) -> ( Q ` t ) = ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) ) |
| 83 |
18 82
|
sylan2 |
|- ( ( ph /\ t e. V ) -> ( Q ` t ) = ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) ) |
| 84 |
81 83
|
breqtrrd |
|- ( ( ph /\ t e. V ) -> ( 1 - E ) < ( Q ` t ) ) |