Metamath Proof Explorer


Theorem stoweidlem12

Description: Lemma for stoweid . This Lemma is used by other three Lemmas. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem12.1
|- Q = ( t e. T |-> ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) )
stoweidlem12.2
|- ( ph -> P : T --> RR )
stoweidlem12.3
|- ( ph -> N e. NN0 )
stoweidlem12.4
|- ( ph -> K e. NN0 )
Assertion stoweidlem12
|- ( ( ph /\ t e. T ) -> ( Q ` t ) = ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) )

Proof

Step Hyp Ref Expression
1 stoweidlem12.1
 |-  Q = ( t e. T |-> ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) )
2 stoweidlem12.2
 |-  ( ph -> P : T --> RR )
3 stoweidlem12.3
 |-  ( ph -> N e. NN0 )
4 stoweidlem12.4
 |-  ( ph -> K e. NN0 )
5 simpr
 |-  ( ( ph /\ t e. T ) -> t e. T )
6 1red
 |-  ( ( ph /\ t e. T ) -> 1 e. RR )
7 2 ffvelrnda
 |-  ( ( ph /\ t e. T ) -> ( P ` t ) e. RR )
8 3 adantr
 |-  ( ( ph /\ t e. T ) -> N e. NN0 )
9 7 8 reexpcld
 |-  ( ( ph /\ t e. T ) -> ( ( P ` t ) ^ N ) e. RR )
10 6 9 resubcld
 |-  ( ( ph /\ t e. T ) -> ( 1 - ( ( P ` t ) ^ N ) ) e. RR )
11 4 3 jca
 |-  ( ph -> ( K e. NN0 /\ N e. NN0 ) )
12 11 adantr
 |-  ( ( ph /\ t e. T ) -> ( K e. NN0 /\ N e. NN0 ) )
13 nn0expcl
 |-  ( ( K e. NN0 /\ N e. NN0 ) -> ( K ^ N ) e. NN0 )
14 12 13 syl
 |-  ( ( ph /\ t e. T ) -> ( K ^ N ) e. NN0 )
15 10 14 reexpcld
 |-  ( ( ph /\ t e. T ) -> ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) e. RR )
16 1 fvmpt2
 |-  ( ( t e. T /\ ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) e. RR ) -> ( Q ` t ) = ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) )
17 5 15 16 syl2anc
 |-  ( ( ph /\ t e. T ) -> ( Q ` t ) = ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) )