| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem12.1 |
|- Q = ( t e. T |-> ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) ) |
| 2 |
|
stoweidlem12.2 |
|- ( ph -> P : T --> RR ) |
| 3 |
|
stoweidlem12.3 |
|- ( ph -> N e. NN0 ) |
| 4 |
|
stoweidlem12.4 |
|- ( ph -> K e. NN0 ) |
| 5 |
|
simpr |
|- ( ( ph /\ t e. T ) -> t e. T ) |
| 6 |
|
1red |
|- ( ( ph /\ t e. T ) -> 1 e. RR ) |
| 7 |
2
|
ffvelcdmda |
|- ( ( ph /\ t e. T ) -> ( P ` t ) e. RR ) |
| 8 |
3
|
adantr |
|- ( ( ph /\ t e. T ) -> N e. NN0 ) |
| 9 |
7 8
|
reexpcld |
|- ( ( ph /\ t e. T ) -> ( ( P ` t ) ^ N ) e. RR ) |
| 10 |
6 9
|
resubcld |
|- ( ( ph /\ t e. T ) -> ( 1 - ( ( P ` t ) ^ N ) ) e. RR ) |
| 11 |
4 3
|
jca |
|- ( ph -> ( K e. NN0 /\ N e. NN0 ) ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ t e. T ) -> ( K e. NN0 /\ N e. NN0 ) ) |
| 13 |
|
nn0expcl |
|- ( ( K e. NN0 /\ N e. NN0 ) -> ( K ^ N ) e. NN0 ) |
| 14 |
12 13
|
syl |
|- ( ( ph /\ t e. T ) -> ( K ^ N ) e. NN0 ) |
| 15 |
10 14
|
reexpcld |
|- ( ( ph /\ t e. T ) -> ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) e. RR ) |
| 16 |
1
|
fvmpt2 |
|- ( ( t e. T /\ ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) e. RR ) -> ( Q ` t ) = ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) ) |
| 17 |
5 15 16
|
syl2anc |
|- ( ( ph /\ t e. T ) -> ( Q ` t ) = ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) ) |