| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem12.1 | ⊢ 𝑄  =  ( 𝑡  ∈  𝑇  ↦  ( ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) | 
						
							| 2 |  | stoweidlem12.2 | ⊢ ( 𝜑  →  𝑃 : 𝑇 ⟶ ℝ ) | 
						
							| 3 |  | stoweidlem12.3 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 4 |  | stoweidlem12.4 | ⊢ ( 𝜑  →  𝐾  ∈  ℕ0 ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  𝑇 ) | 
						
							| 6 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  1  ∈  ℝ ) | 
						
							| 7 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑃 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 8 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 9 | 7 8 | reexpcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 )  ∈  ℝ ) | 
						
							| 10 | 6 9 | resubcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) )  ∈  ℝ ) | 
						
							| 11 | 4 3 | jca | ⊢ ( 𝜑  →  ( 𝐾  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐾  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) ) | 
						
							| 13 |  | nn0expcl | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐾 ↑ 𝑁 )  ∈  ℕ0 ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐾 ↑ 𝑁 )  ∈  ℕ0 ) | 
						
							| 15 | 10 14 | reexpcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) )  ∈  ℝ ) | 
						
							| 16 | 1 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  ( ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) )  ∈  ℝ )  →  ( 𝑄 ‘ 𝑡 )  =  ( ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) | 
						
							| 17 | 5 15 16 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑄 ‘ 𝑡 )  =  ( ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) |