| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem13.1 |
|- ( ph -> E e. RR+ ) |
| 2 |
|
stoweidlem13.2 |
|- ( ph -> X e. RR ) |
| 3 |
|
stoweidlem13.3 |
|- ( ph -> Y e. RR ) |
| 4 |
|
stoweidlem13.4 |
|- ( ph -> j e. RR ) |
| 5 |
|
stoweidlem13.5 |
|- ( ph -> ( ( j - ( 4 / 3 ) ) x. E ) < X ) |
| 6 |
|
stoweidlem13.6 |
|- ( ph -> X <_ ( ( j - ( 1 / 3 ) ) x. E ) ) |
| 7 |
|
stoweidlem13.7 |
|- ( ph -> ( ( j - ( 4 / 3 ) ) x. E ) < Y ) |
| 8 |
|
stoweidlem13.8 |
|- ( ph -> Y < ( ( j + ( 1 / 3 ) ) x. E ) ) |
| 9 |
3 2
|
resubcld |
|- ( ph -> ( Y - X ) e. RR ) |
| 10 |
|
2re |
|- 2 e. RR |
| 11 |
1
|
rpred |
|- ( ph -> E e. RR ) |
| 12 |
|
remulcl |
|- ( ( 2 e. RR /\ E e. RR ) -> ( 2 x. E ) e. RR ) |
| 13 |
10 11 12
|
sylancr |
|- ( ph -> ( 2 x. E ) e. RR ) |
| 14 |
3
|
recnd |
|- ( ph -> Y e. CC ) |
| 15 |
2
|
recnd |
|- ( ph -> X e. CC ) |
| 16 |
14 15
|
negsubdi2d |
|- ( ph -> -u ( Y - X ) = ( X - Y ) ) |
| 17 |
2 3
|
resubcld |
|- ( ph -> ( X - Y ) e. RR ) |
| 18 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 19 |
18 11
|
remulcld |
|- ( ph -> ( 1 x. E ) e. RR ) |
| 20 |
|
3re |
|- 3 e. RR |
| 21 |
|
3ne0 |
|- 3 =/= 0 |
| 22 |
20 21
|
rereccli |
|- ( 1 / 3 ) e. RR |
| 23 |
22
|
a1i |
|- ( ph -> ( 1 / 3 ) e. RR ) |
| 24 |
4 23
|
resubcld |
|- ( ph -> ( j - ( 1 / 3 ) ) e. RR ) |
| 25 |
24 11
|
remulcld |
|- ( ph -> ( ( j - ( 1 / 3 ) ) x. E ) e. RR ) |
| 26 |
25 3
|
resubcld |
|- ( ph -> ( ( ( j - ( 1 / 3 ) ) x. E ) - Y ) e. RR ) |
| 27 |
|
4re |
|- 4 e. RR |
| 28 |
27 20 21
|
3pm3.2i |
|- ( 4 e. RR /\ 3 e. RR /\ 3 =/= 0 ) |
| 29 |
|
redivcl |
|- ( ( 4 e. RR /\ 3 e. RR /\ 3 =/= 0 ) -> ( 4 / 3 ) e. RR ) |
| 30 |
28 29
|
mp1i |
|- ( ph -> ( 4 / 3 ) e. RR ) |
| 31 |
4 30
|
resubcld |
|- ( ph -> ( j - ( 4 / 3 ) ) e. RR ) |
| 32 |
31 11
|
remulcld |
|- ( ph -> ( ( j - ( 4 / 3 ) ) x. E ) e. RR ) |
| 33 |
25 32
|
resubcld |
|- ( ph -> ( ( ( j - ( 1 / 3 ) ) x. E ) - ( ( j - ( 4 / 3 ) ) x. E ) ) e. RR ) |
| 34 |
2 25 3 6
|
lesub1dd |
|- ( ph -> ( X - Y ) <_ ( ( ( j - ( 1 / 3 ) ) x. E ) - Y ) ) |
| 35 |
32 3 25 7
|
ltsub2dd |
|- ( ph -> ( ( ( j - ( 1 / 3 ) ) x. E ) - Y ) < ( ( ( j - ( 1 / 3 ) ) x. E ) - ( ( j - ( 4 / 3 ) ) x. E ) ) ) |
| 36 |
17 26 33 34 35
|
lelttrd |
|- ( ph -> ( X - Y ) < ( ( ( j - ( 1 / 3 ) ) x. E ) - ( ( j - ( 4 / 3 ) ) x. E ) ) ) |
| 37 |
4
|
recnd |
|- ( ph -> j e. CC ) |
| 38 |
23
|
recnd |
|- ( ph -> ( 1 / 3 ) e. CC ) |
| 39 |
37 38
|
subcld |
|- ( ph -> ( j - ( 1 / 3 ) ) e. CC ) |
| 40 |
30
|
recnd |
|- ( ph -> ( 4 / 3 ) e. CC ) |
| 41 |
37 40
|
subcld |
|- ( ph -> ( j - ( 4 / 3 ) ) e. CC ) |
| 42 |
11
|
recnd |
|- ( ph -> E e. CC ) |
| 43 |
39 41 42
|
subdird |
|- ( ph -> ( ( ( j - ( 1 / 3 ) ) - ( j - ( 4 / 3 ) ) ) x. E ) = ( ( ( j - ( 1 / 3 ) ) x. E ) - ( ( j - ( 4 / 3 ) ) x. E ) ) ) |
| 44 |
37 38 37 40
|
sub4d |
|- ( ph -> ( ( j - ( 1 / 3 ) ) - ( j - ( 4 / 3 ) ) ) = ( ( j - j ) - ( ( 1 / 3 ) - ( 4 / 3 ) ) ) ) |
| 45 |
37 37
|
subcld |
|- ( ph -> ( j - j ) e. CC ) |
| 46 |
45 38 40
|
subsub2d |
|- ( ph -> ( ( j - j ) - ( ( 1 / 3 ) - ( 4 / 3 ) ) ) = ( ( j - j ) + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) ) |
| 47 |
44 46
|
eqtrd |
|- ( ph -> ( ( j - ( 1 / 3 ) ) - ( j - ( 4 / 3 ) ) ) = ( ( j - j ) + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) ) |
| 48 |
47
|
oveq1d |
|- ( ph -> ( ( ( j - ( 1 / 3 ) ) - ( j - ( 4 / 3 ) ) ) x. E ) = ( ( ( j - j ) + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) x. E ) ) |
| 49 |
43 48
|
eqtr3d |
|- ( ph -> ( ( ( j - ( 1 / 3 ) ) x. E ) - ( ( j - ( 4 / 3 ) ) x. E ) ) = ( ( ( j - j ) + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) x. E ) ) |
| 50 |
36 49
|
breqtrd |
|- ( ph -> ( X - Y ) < ( ( ( j - j ) + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) x. E ) ) |
| 51 |
37
|
subidd |
|- ( ph -> ( j - j ) = 0 ) |
| 52 |
51
|
oveq1d |
|- ( ph -> ( ( j - j ) + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) = ( 0 + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) ) |
| 53 |
|
4cn |
|- 4 e. CC |
| 54 |
|
3cn |
|- 3 e. CC |
| 55 |
53 54 21
|
divcli |
|- ( 4 / 3 ) e. CC |
| 56 |
|
ax-1cn |
|- 1 e. CC |
| 57 |
56 54 21
|
divcli |
|- ( 1 / 3 ) e. CC |
| 58 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
| 59 |
58
|
oveq2i |
|- ( ( 1 / 3 ) + ( 1 / 1 ) ) = ( ( 1 / 3 ) + 1 ) |
| 60 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 61 |
56 54 56 56 21 60
|
divadddivi |
|- ( ( 1 / 3 ) + ( 1 / 1 ) ) = ( ( ( 1 x. 1 ) + ( 1 x. 3 ) ) / ( 3 x. 1 ) ) |
| 62 |
59 61
|
eqtr3i |
|- ( ( 1 / 3 ) + 1 ) = ( ( ( 1 x. 1 ) + ( 1 x. 3 ) ) / ( 3 x. 1 ) ) |
| 63 |
54 56
|
addcomi |
|- ( 3 + 1 ) = ( 1 + 3 ) |
| 64 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
| 65 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 66 |
54
|
mullidi |
|- ( 1 x. 3 ) = 3 |
| 67 |
65 66
|
oveq12i |
|- ( ( 1 x. 1 ) + ( 1 x. 3 ) ) = ( 1 + 3 ) |
| 68 |
63 64 67
|
3eqtr4ri |
|- ( ( 1 x. 1 ) + ( 1 x. 3 ) ) = 4 |
| 69 |
68
|
oveq1i |
|- ( ( ( 1 x. 1 ) + ( 1 x. 3 ) ) / ( 3 x. 1 ) ) = ( 4 / ( 3 x. 1 ) ) |
| 70 |
|
3t1e3 |
|- ( 3 x. 1 ) = 3 |
| 71 |
70
|
oveq2i |
|- ( 4 / ( 3 x. 1 ) ) = ( 4 / 3 ) |
| 72 |
62 69 71
|
3eqtri |
|- ( ( 1 / 3 ) + 1 ) = ( 4 / 3 ) |
| 73 |
55 57 56 72
|
subaddrii |
|- ( ( 4 / 3 ) - ( 1 / 3 ) ) = 1 |
| 74 |
73
|
oveq2i |
|- ( 0 + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) = ( 0 + 1 ) |
| 75 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 76 |
74 75
|
eqtr4i |
|- ( 0 + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) = 1 |
| 77 |
52 76
|
eqtrdi |
|- ( ph -> ( ( j - j ) + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) = 1 ) |
| 78 |
77
|
oveq1d |
|- ( ph -> ( ( ( j - j ) + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) x. E ) = ( 1 x. E ) ) |
| 79 |
50 78
|
breqtrd |
|- ( ph -> ( X - Y ) < ( 1 x. E ) ) |
| 80 |
|
1lt2 |
|- 1 < 2 |
| 81 |
10
|
a1i |
|- ( ph -> 2 e. RR ) |
| 82 |
18 81 1
|
ltmul1d |
|- ( ph -> ( 1 < 2 <-> ( 1 x. E ) < ( 2 x. E ) ) ) |
| 83 |
80 82
|
mpbii |
|- ( ph -> ( 1 x. E ) < ( 2 x. E ) ) |
| 84 |
17 19 13 79 83
|
lttrd |
|- ( ph -> ( X - Y ) < ( 2 x. E ) ) |
| 85 |
16 84
|
eqbrtrd |
|- ( ph -> -u ( Y - X ) < ( 2 x. E ) ) |
| 86 |
9 13 85
|
ltnegcon1d |
|- ( ph -> -u ( 2 x. E ) < ( Y - X ) ) |
| 87 |
|
5re |
|- 5 e. RR |
| 88 |
87
|
a1i |
|- ( ph -> 5 e. RR ) |
| 89 |
20
|
a1i |
|- ( ph -> 3 e. RR ) |
| 90 |
21
|
a1i |
|- ( ph -> 3 =/= 0 ) |
| 91 |
88 89 90
|
redivcld |
|- ( ph -> ( 5 / 3 ) e. RR ) |
| 92 |
91 11
|
remulcld |
|- ( ph -> ( ( 5 / 3 ) x. E ) e. RR ) |
| 93 |
2
|
renegcld |
|- ( ph -> -u X e. RR ) |
| 94 |
4 23
|
readdcld |
|- ( ph -> ( j + ( 1 / 3 ) ) e. RR ) |
| 95 |
94 11
|
remulcld |
|- ( ph -> ( ( j + ( 1 / 3 ) ) x. E ) e. RR ) |
| 96 |
32
|
renegcld |
|- ( ph -> -u ( ( j - ( 4 / 3 ) ) x. E ) e. RR ) |
| 97 |
32 2
|
ltnegd |
|- ( ph -> ( ( ( j - ( 4 / 3 ) ) x. E ) < X <-> -u X < -u ( ( j - ( 4 / 3 ) ) x. E ) ) ) |
| 98 |
5 97
|
mpbid |
|- ( ph -> -u X < -u ( ( j - ( 4 / 3 ) ) x. E ) ) |
| 99 |
3 93 95 96 8 98
|
lt2addd |
|- ( ph -> ( Y + -u X ) < ( ( ( j + ( 1 / 3 ) ) x. E ) + -u ( ( j - ( 4 / 3 ) ) x. E ) ) ) |
| 100 |
14 15
|
negsubd |
|- ( ph -> ( Y + -u X ) = ( Y - X ) ) |
| 101 |
37 38 42
|
adddird |
|- ( ph -> ( ( j + ( 1 / 3 ) ) x. E ) = ( ( j x. E ) + ( ( 1 / 3 ) x. E ) ) ) |
| 102 |
37 40
|
negsubd |
|- ( ph -> ( j + -u ( 4 / 3 ) ) = ( j - ( 4 / 3 ) ) ) |
| 103 |
102
|
eqcomd |
|- ( ph -> ( j - ( 4 / 3 ) ) = ( j + -u ( 4 / 3 ) ) ) |
| 104 |
103
|
oveq1d |
|- ( ph -> ( ( j - ( 4 / 3 ) ) x. E ) = ( ( j + -u ( 4 / 3 ) ) x. E ) ) |
| 105 |
40
|
negcld |
|- ( ph -> -u ( 4 / 3 ) e. CC ) |
| 106 |
37 105 42
|
adddird |
|- ( ph -> ( ( j + -u ( 4 / 3 ) ) x. E ) = ( ( j x. E ) + ( -u ( 4 / 3 ) x. E ) ) ) |
| 107 |
40 42
|
mulneg1d |
|- ( ph -> ( -u ( 4 / 3 ) x. E ) = -u ( ( 4 / 3 ) x. E ) ) |
| 108 |
107
|
oveq2d |
|- ( ph -> ( ( j x. E ) + ( -u ( 4 / 3 ) x. E ) ) = ( ( j x. E ) + -u ( ( 4 / 3 ) x. E ) ) ) |
| 109 |
104 106 108
|
3eqtrd |
|- ( ph -> ( ( j - ( 4 / 3 ) ) x. E ) = ( ( j x. E ) + -u ( ( 4 / 3 ) x. E ) ) ) |
| 110 |
109
|
negeqd |
|- ( ph -> -u ( ( j - ( 4 / 3 ) ) x. E ) = -u ( ( j x. E ) + -u ( ( 4 / 3 ) x. E ) ) ) |
| 111 |
37 42
|
mulcld |
|- ( ph -> ( j x. E ) e. CC ) |
| 112 |
40 42
|
mulcld |
|- ( ph -> ( ( 4 / 3 ) x. E ) e. CC ) |
| 113 |
112
|
negcld |
|- ( ph -> -u ( ( 4 / 3 ) x. E ) e. CC ) |
| 114 |
111 113
|
negdid |
|- ( ph -> -u ( ( j x. E ) + -u ( ( 4 / 3 ) x. E ) ) = ( -u ( j x. E ) + -u -u ( ( 4 / 3 ) x. E ) ) ) |
| 115 |
112
|
negnegd |
|- ( ph -> -u -u ( ( 4 / 3 ) x. E ) = ( ( 4 / 3 ) x. E ) ) |
| 116 |
115
|
oveq2d |
|- ( ph -> ( -u ( j x. E ) + -u -u ( ( 4 / 3 ) x. E ) ) = ( -u ( j x. E ) + ( ( 4 / 3 ) x. E ) ) ) |
| 117 |
110 114 116
|
3eqtrd |
|- ( ph -> -u ( ( j - ( 4 / 3 ) ) x. E ) = ( -u ( j x. E ) + ( ( 4 / 3 ) x. E ) ) ) |
| 118 |
101 117
|
oveq12d |
|- ( ph -> ( ( ( j + ( 1 / 3 ) ) x. E ) + -u ( ( j - ( 4 / 3 ) ) x. E ) ) = ( ( ( j x. E ) + ( ( 1 / 3 ) x. E ) ) + ( -u ( j x. E ) + ( ( 4 / 3 ) x. E ) ) ) ) |
| 119 |
38 42
|
mulcld |
|- ( ph -> ( ( 1 / 3 ) x. E ) e. CC ) |
| 120 |
111
|
negcld |
|- ( ph -> -u ( j x. E ) e. CC ) |
| 121 |
111 119 120 112
|
add4d |
|- ( ph -> ( ( ( j x. E ) + ( ( 1 / 3 ) x. E ) ) + ( -u ( j x. E ) + ( ( 4 / 3 ) x. E ) ) ) = ( ( ( j x. E ) + -u ( j x. E ) ) + ( ( ( 1 / 3 ) x. E ) + ( ( 4 / 3 ) x. E ) ) ) ) |
| 122 |
111
|
negidd |
|- ( ph -> ( ( j x. E ) + -u ( j x. E ) ) = 0 ) |
| 123 |
122
|
oveq1d |
|- ( ph -> ( ( ( j x. E ) + -u ( j x. E ) ) + ( ( ( 1 / 3 ) x. E ) + ( ( 4 / 3 ) x. E ) ) ) = ( 0 + ( ( ( 1 / 3 ) x. E ) + ( ( 4 / 3 ) x. E ) ) ) ) |
| 124 |
119 112
|
addcld |
|- ( ph -> ( ( ( 1 / 3 ) x. E ) + ( ( 4 / 3 ) x. E ) ) e. CC ) |
| 125 |
124
|
addlidd |
|- ( ph -> ( 0 + ( ( ( 1 / 3 ) x. E ) + ( ( 4 / 3 ) x. E ) ) ) = ( ( ( 1 / 3 ) x. E ) + ( ( 4 / 3 ) x. E ) ) ) |
| 126 |
121 123 125
|
3eqtrd |
|- ( ph -> ( ( ( j x. E ) + ( ( 1 / 3 ) x. E ) ) + ( -u ( j x. E ) + ( ( 4 / 3 ) x. E ) ) ) = ( ( ( 1 / 3 ) x. E ) + ( ( 4 / 3 ) x. E ) ) ) |
| 127 |
38 40 42
|
adddird |
|- ( ph -> ( ( ( 1 / 3 ) + ( 4 / 3 ) ) x. E ) = ( ( ( 1 / 3 ) x. E ) + ( ( 4 / 3 ) x. E ) ) ) |
| 128 |
89
|
recnd |
|- ( ph -> 3 e. CC ) |
| 129 |
38 40
|
addcld |
|- ( ph -> ( ( 1 / 3 ) + ( 4 / 3 ) ) e. CC ) |
| 130 |
128 38 40
|
adddid |
|- ( ph -> ( 3 x. ( ( 1 / 3 ) + ( 4 / 3 ) ) ) = ( ( 3 x. ( 1 / 3 ) ) + ( 3 x. ( 4 / 3 ) ) ) ) |
| 131 |
56 53
|
addcomi |
|- ( 1 + 4 ) = ( 4 + 1 ) |
| 132 |
56 54 21
|
divcan2i |
|- ( 3 x. ( 1 / 3 ) ) = 1 |
| 133 |
53 54 21
|
divcan2i |
|- ( 3 x. ( 4 / 3 ) ) = 4 |
| 134 |
132 133
|
oveq12i |
|- ( ( 3 x. ( 1 / 3 ) ) + ( 3 x. ( 4 / 3 ) ) ) = ( 1 + 4 ) |
| 135 |
|
df-5 |
|- 5 = ( 4 + 1 ) |
| 136 |
131 134 135
|
3eqtr4i |
|- ( ( 3 x. ( 1 / 3 ) ) + ( 3 x. ( 4 / 3 ) ) ) = 5 |
| 137 |
130 136
|
eqtrdi |
|- ( ph -> ( 3 x. ( ( 1 / 3 ) + ( 4 / 3 ) ) ) = 5 ) |
| 138 |
128 129 90 137
|
mvllmuld |
|- ( ph -> ( ( 1 / 3 ) + ( 4 / 3 ) ) = ( 5 / 3 ) ) |
| 139 |
138
|
oveq1d |
|- ( ph -> ( ( ( 1 / 3 ) + ( 4 / 3 ) ) x. E ) = ( ( 5 / 3 ) x. E ) ) |
| 140 |
126 127 139
|
3eqtr2d |
|- ( ph -> ( ( ( j x. E ) + ( ( 1 / 3 ) x. E ) ) + ( -u ( j x. E ) + ( ( 4 / 3 ) x. E ) ) ) = ( ( 5 / 3 ) x. E ) ) |
| 141 |
118 140
|
eqtrd |
|- ( ph -> ( ( ( j + ( 1 / 3 ) ) x. E ) + -u ( ( j - ( 4 / 3 ) ) x. E ) ) = ( ( 5 / 3 ) x. E ) ) |
| 142 |
99 100 141
|
3brtr3d |
|- ( ph -> ( Y - X ) < ( ( 5 / 3 ) x. E ) ) |
| 143 |
|
5lt6 |
|- 5 < 6 |
| 144 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
| 145 |
143 144
|
breqtrri |
|- 5 < ( 3 x. 2 ) |
| 146 |
|
3pos |
|- 0 < 3 |
| 147 |
20 146
|
pm3.2i |
|- ( 3 e. RR /\ 0 < 3 ) |
| 148 |
|
ltdivmul |
|- ( ( 5 e. RR /\ 2 e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) -> ( ( 5 / 3 ) < 2 <-> 5 < ( 3 x. 2 ) ) ) |
| 149 |
87 10 147 148
|
mp3an |
|- ( ( 5 / 3 ) < 2 <-> 5 < ( 3 x. 2 ) ) |
| 150 |
145 149
|
mpbir |
|- ( 5 / 3 ) < 2 |
| 151 |
150
|
a1i |
|- ( ph -> ( 5 / 3 ) < 2 ) |
| 152 |
91 81 1 151
|
ltmul1dd |
|- ( ph -> ( ( 5 / 3 ) x. E ) < ( 2 x. E ) ) |
| 153 |
9 92 13 142 152
|
lttrd |
|- ( ph -> ( Y - X ) < ( 2 x. E ) ) |
| 154 |
9 13
|
absltd |
|- ( ph -> ( ( abs ` ( Y - X ) ) < ( 2 x. E ) <-> ( -u ( 2 x. E ) < ( Y - X ) /\ ( Y - X ) < ( 2 x. E ) ) ) ) |
| 155 |
86 153 154
|
mpbir2and |
|- ( ph -> ( abs ` ( Y - X ) ) < ( 2 x. E ) ) |