| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem25.1 |
|- Q = ( t e. T |-> ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) ) |
| 2 |
|
stoweidlem25.2 |
|- ( ph -> N e. NN ) |
| 3 |
|
stoweidlem25.3 |
|- ( ph -> K e. NN ) |
| 4 |
|
stoweidlem25.4 |
|- ( ph -> D e. RR+ ) |
| 5 |
|
stoweidlem25.6 |
|- ( ph -> P : T --> RR ) |
| 6 |
|
stoweidlem25.7 |
|- ( ph -> A. t e. T ( 0 <_ ( P ` t ) /\ ( P ` t ) <_ 1 ) ) |
| 7 |
|
stoweidlem25.8 |
|- ( ph -> A. t e. ( T \ U ) D <_ ( P ` t ) ) |
| 8 |
|
stoweidlem25.9 |
|- ( ph -> E e. RR+ ) |
| 9 |
|
stoweidlem25.11 |
|- ( ph -> ( 1 / ( ( K x. D ) ^ N ) ) < E ) |
| 10 |
|
eldifi |
|- ( t e. ( T \ U ) -> t e. T ) |
| 11 |
2
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 12 |
3
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
| 13 |
1 5 11 12
|
stoweidlem12 |
|- ( ( ph /\ t e. T ) -> ( Q ` t ) = ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) ) |
| 14 |
|
1red |
|- ( ( ph /\ t e. T ) -> 1 e. RR ) |
| 15 |
5
|
ffvelcdmda |
|- ( ( ph /\ t e. T ) -> ( P ` t ) e. RR ) |
| 16 |
11
|
adantr |
|- ( ( ph /\ t e. T ) -> N e. NN0 ) |
| 17 |
15 16
|
reexpcld |
|- ( ( ph /\ t e. T ) -> ( ( P ` t ) ^ N ) e. RR ) |
| 18 |
14 17
|
resubcld |
|- ( ( ph /\ t e. T ) -> ( 1 - ( ( P ` t ) ^ N ) ) e. RR ) |
| 19 |
3 11
|
nnexpcld |
|- ( ph -> ( K ^ N ) e. NN ) |
| 20 |
19
|
nnnn0d |
|- ( ph -> ( K ^ N ) e. NN0 ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ t e. T ) -> ( K ^ N ) e. NN0 ) |
| 22 |
18 21
|
reexpcld |
|- ( ( ph /\ t e. T ) -> ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) e. RR ) |
| 23 |
13 22
|
eqeltrd |
|- ( ( ph /\ t e. T ) -> ( Q ` t ) e. RR ) |
| 24 |
10 23
|
sylan2 |
|- ( ( ph /\ t e. ( T \ U ) ) -> ( Q ` t ) e. RR ) |
| 25 |
3
|
nnred |
|- ( ph -> K e. RR ) |
| 26 |
4
|
rpred |
|- ( ph -> D e. RR ) |
| 27 |
25 26
|
remulcld |
|- ( ph -> ( K x. D ) e. RR ) |
| 28 |
27 11
|
reexpcld |
|- ( ph -> ( ( K x. D ) ^ N ) e. RR ) |
| 29 |
3
|
nncnd |
|- ( ph -> K e. CC ) |
| 30 |
3
|
nnne0d |
|- ( ph -> K =/= 0 ) |
| 31 |
4
|
rpcnne0d |
|- ( ph -> ( D e. CC /\ D =/= 0 ) ) |
| 32 |
|
mulne0 |
|- ( ( ( K e. CC /\ K =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( K x. D ) =/= 0 ) |
| 33 |
29 30 31 32
|
syl21anc |
|- ( ph -> ( K x. D ) =/= 0 ) |
| 34 |
4
|
rpcnd |
|- ( ph -> D e. CC ) |
| 35 |
29 34
|
mulcld |
|- ( ph -> ( K x. D ) e. CC ) |
| 36 |
|
expne0 |
|- ( ( ( K x. D ) e. CC /\ N e. NN ) -> ( ( ( K x. D ) ^ N ) =/= 0 <-> ( K x. D ) =/= 0 ) ) |
| 37 |
35 2 36
|
syl2anc |
|- ( ph -> ( ( ( K x. D ) ^ N ) =/= 0 <-> ( K x. D ) =/= 0 ) ) |
| 38 |
33 37
|
mpbird |
|- ( ph -> ( ( K x. D ) ^ N ) =/= 0 ) |
| 39 |
28 38
|
rereccld |
|- ( ph -> ( 1 / ( ( K x. D ) ^ N ) ) e. RR ) |
| 40 |
39
|
adantr |
|- ( ( ph /\ t e. ( T \ U ) ) -> ( 1 / ( ( K x. D ) ^ N ) ) e. RR ) |
| 41 |
8
|
rpred |
|- ( ph -> E e. RR ) |
| 42 |
41
|
adantr |
|- ( ( ph /\ t e. ( T \ U ) ) -> E e. RR ) |
| 43 |
10 13
|
sylan2 |
|- ( ( ph /\ t e. ( T \ U ) ) -> ( Q ` t ) = ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) ) |
| 44 |
2
|
adantr |
|- ( ( ph /\ t e. ( T \ U ) ) -> N e. NN ) |
| 45 |
3
|
adantr |
|- ( ( ph /\ t e. ( T \ U ) ) -> K e. NN ) |
| 46 |
4
|
adantr |
|- ( ( ph /\ t e. ( T \ U ) ) -> D e. RR+ ) |
| 47 |
5
|
adantr |
|- ( ( ph /\ t e. ( T \ U ) ) -> P : T --> RR ) |
| 48 |
10
|
adantl |
|- ( ( ph /\ t e. ( T \ U ) ) -> t e. T ) |
| 49 |
47 48
|
ffvelcdmd |
|- ( ( ph /\ t e. ( T \ U ) ) -> ( P ` t ) e. RR ) |
| 50 |
|
0red |
|- ( ( ph /\ t e. ( T \ U ) ) -> 0 e. RR ) |
| 51 |
26
|
adantr |
|- ( ( ph /\ t e. ( T \ U ) ) -> D e. RR ) |
| 52 |
4
|
rpgt0d |
|- ( ph -> 0 < D ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ t e. ( T \ U ) ) -> 0 < D ) |
| 54 |
7
|
r19.21bi |
|- ( ( ph /\ t e. ( T \ U ) ) -> D <_ ( P ` t ) ) |
| 55 |
50 51 49 53 54
|
ltletrd |
|- ( ( ph /\ t e. ( T \ U ) ) -> 0 < ( P ` t ) ) |
| 56 |
49 55
|
elrpd |
|- ( ( ph /\ t e. ( T \ U ) ) -> ( P ` t ) e. RR+ ) |
| 57 |
6
|
adantr |
|- ( ( ph /\ t e. ( T \ U ) ) -> A. t e. T ( 0 <_ ( P ` t ) /\ ( P ` t ) <_ 1 ) ) |
| 58 |
|
rsp |
|- ( A. t e. T ( 0 <_ ( P ` t ) /\ ( P ` t ) <_ 1 ) -> ( t e. T -> ( 0 <_ ( P ` t ) /\ ( P ` t ) <_ 1 ) ) ) |
| 59 |
57 48 58
|
sylc |
|- ( ( ph /\ t e. ( T \ U ) ) -> ( 0 <_ ( P ` t ) /\ ( P ` t ) <_ 1 ) ) |
| 60 |
59
|
simpld |
|- ( ( ph /\ t e. ( T \ U ) ) -> 0 <_ ( P ` t ) ) |
| 61 |
59
|
simprd |
|- ( ( ph /\ t e. ( T \ U ) ) -> ( P ` t ) <_ 1 ) |
| 62 |
44 45 46 56 60 61 54
|
stoweidlem1 |
|- ( ( ph /\ t e. ( T \ U ) ) -> ( ( 1 - ( ( P ` t ) ^ N ) ) ^ ( K ^ N ) ) <_ ( 1 / ( ( K x. D ) ^ N ) ) ) |
| 63 |
43 62
|
eqbrtrd |
|- ( ( ph /\ t e. ( T \ U ) ) -> ( Q ` t ) <_ ( 1 / ( ( K x. D ) ^ N ) ) ) |
| 64 |
9
|
adantr |
|- ( ( ph /\ t e. ( T \ U ) ) -> ( 1 / ( ( K x. D ) ^ N ) ) < E ) |
| 65 |
24 40 42 63 64
|
lelttrd |
|- ( ( ph /\ t e. ( T \ U ) ) -> ( Q ` t ) < E ) |