| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem26.1 |
|- F/_ t F |
| 2 |
|
stoweidlem26.2 |
|- F/ j ph |
| 3 |
|
stoweidlem26.3 |
|- F/ t ph |
| 4 |
|
stoweidlem26.4 |
|- D = ( j e. ( 0 ... N ) |-> { t e. T | ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) } ) |
| 5 |
|
stoweidlem26.5 |
|- B = ( j e. ( 0 ... N ) |-> { t e. T | ( ( j + ( 1 / 3 ) ) x. E ) <_ ( F ` t ) } ) |
| 6 |
|
stoweidlem26.6 |
|- ( ph -> N e. NN ) |
| 7 |
|
stoweidlem26.7 |
|- ( ph -> T e. _V ) |
| 8 |
|
stoweidlem26.8 |
|- ( ph -> L e. ( 1 ... N ) ) |
| 9 |
|
stoweidlem26.9 |
|- ( ph -> S e. ( ( D ` L ) \ ( D ` ( L - 1 ) ) ) ) |
| 10 |
|
stoweidlem26.10 |
|- ( ph -> F : T --> RR ) |
| 11 |
|
stoweidlem26.11 |
|- ( ph -> E e. RR+ ) |
| 12 |
|
stoweidlem26.12 |
|- ( ph -> E < ( 1 / 3 ) ) |
| 13 |
|
stoweidlem26.13 |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> ( X ` i ) : T --> RR ) |
| 14 |
|
stoweidlem26.14 |
|- ( ( ph /\ i e. ( 0 ... N ) /\ t e. T ) -> 0 <_ ( ( X ` i ) ` t ) ) |
| 15 |
|
stoweidlem26.15 |
|- ( ( ph /\ i e. ( 0 ... N ) /\ t e. ( B ` i ) ) -> ( 1 - ( E / N ) ) < ( ( X ` i ) ` t ) ) |
| 16 |
|
1re |
|- 1 e. RR |
| 17 |
|
eleq1 |
|- ( L = 1 -> ( L e. RR <-> 1 e. RR ) ) |
| 18 |
16 17
|
mpbiri |
|- ( L = 1 -> L e. RR ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ L = 1 ) -> L e. RR ) |
| 20 |
|
4re |
|- 4 e. RR |
| 21 |
20
|
a1i |
|- ( ( ph /\ L = 1 ) -> 4 e. RR ) |
| 22 |
|
3re |
|- 3 e. RR |
| 23 |
22
|
a1i |
|- ( ( ph /\ L = 1 ) -> 3 e. RR ) |
| 24 |
|
3ne0 |
|- 3 =/= 0 |
| 25 |
24
|
a1i |
|- ( ( ph /\ L = 1 ) -> 3 =/= 0 ) |
| 26 |
21 23 25
|
redivcld |
|- ( ( ph /\ L = 1 ) -> ( 4 / 3 ) e. RR ) |
| 27 |
19 26
|
resubcld |
|- ( ( ph /\ L = 1 ) -> ( L - ( 4 / 3 ) ) e. RR ) |
| 28 |
11
|
rpred |
|- ( ph -> E e. RR ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ L = 1 ) -> E e. RR ) |
| 30 |
27 29
|
remulcld |
|- ( ( ph /\ L = 1 ) -> ( ( L - ( 4 / 3 ) ) x. E ) e. RR ) |
| 31 |
|
0red |
|- ( ( ph /\ L = 1 ) -> 0 e. RR ) |
| 32 |
|
fzfid |
|- ( ph -> ( 0 ... N ) e. Fin ) |
| 33 |
28
|
adantr |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> E e. RR ) |
| 34 |
|
eldif |
|- ( S e. ( ( D ` L ) \ ( D ` ( L - 1 ) ) ) <-> ( S e. ( D ` L ) /\ -. S e. ( D ` ( L - 1 ) ) ) ) |
| 35 |
9 34
|
sylib |
|- ( ph -> ( S e. ( D ` L ) /\ -. S e. ( D ` ( L - 1 ) ) ) ) |
| 36 |
35
|
simpld |
|- ( ph -> S e. ( D ` L ) ) |
| 37 |
|
oveq1 |
|- ( j = L -> ( j - ( 1 / 3 ) ) = ( L - ( 1 / 3 ) ) ) |
| 38 |
37
|
oveq1d |
|- ( j = L -> ( ( j - ( 1 / 3 ) ) x. E ) = ( ( L - ( 1 / 3 ) ) x. E ) ) |
| 39 |
38
|
breq2d |
|- ( j = L -> ( ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) <-> ( F ` t ) <_ ( ( L - ( 1 / 3 ) ) x. E ) ) ) |
| 40 |
39
|
rabbidv |
|- ( j = L -> { t e. T | ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) } = { t e. T | ( F ` t ) <_ ( ( L - ( 1 / 3 ) ) x. E ) } ) |
| 41 |
|
fz1ssfz0 |
|- ( 1 ... N ) C_ ( 0 ... N ) |
| 42 |
41 8
|
sselid |
|- ( ph -> L e. ( 0 ... N ) ) |
| 43 |
|
rabexg |
|- ( T e. _V -> { t e. T | ( F ` t ) <_ ( ( L - ( 1 / 3 ) ) x. E ) } e. _V ) |
| 44 |
7 43
|
syl |
|- ( ph -> { t e. T | ( F ` t ) <_ ( ( L - ( 1 / 3 ) ) x. E ) } e. _V ) |
| 45 |
4 40 42 44
|
fvmptd3 |
|- ( ph -> ( D ` L ) = { t e. T | ( F ` t ) <_ ( ( L - ( 1 / 3 ) ) x. E ) } ) |
| 46 |
36 45
|
eleqtrd |
|- ( ph -> S e. { t e. T | ( F ` t ) <_ ( ( L - ( 1 / 3 ) ) x. E ) } ) |
| 47 |
|
nfcv |
|- F/_ t S |
| 48 |
|
nfcv |
|- F/_ t T |
| 49 |
1 47
|
nffv |
|- F/_ t ( F ` S ) |
| 50 |
|
nfcv |
|- F/_ t <_ |
| 51 |
|
nfcv |
|- F/_ t ( ( L - ( 1 / 3 ) ) x. E ) |
| 52 |
49 50 51
|
nfbr |
|- F/ t ( F ` S ) <_ ( ( L - ( 1 / 3 ) ) x. E ) |
| 53 |
|
fveq2 |
|- ( t = S -> ( F ` t ) = ( F ` S ) ) |
| 54 |
53
|
breq1d |
|- ( t = S -> ( ( F ` t ) <_ ( ( L - ( 1 / 3 ) ) x. E ) <-> ( F ` S ) <_ ( ( L - ( 1 / 3 ) ) x. E ) ) ) |
| 55 |
47 48 52 54
|
elrabf |
|- ( S e. { t e. T | ( F ` t ) <_ ( ( L - ( 1 / 3 ) ) x. E ) } <-> ( S e. T /\ ( F ` S ) <_ ( ( L - ( 1 / 3 ) ) x. E ) ) ) |
| 56 |
46 55
|
sylib |
|- ( ph -> ( S e. T /\ ( F ` S ) <_ ( ( L - ( 1 / 3 ) ) x. E ) ) ) |
| 57 |
56
|
simpld |
|- ( ph -> S e. T ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> S e. T ) |
| 59 |
13 58
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> ( ( X ` i ) ` S ) e. RR ) |
| 60 |
33 59
|
remulcld |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> ( E x. ( ( X ` i ) ` S ) ) e. RR ) |
| 61 |
32 60
|
fsumrecl |
|- ( ph -> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) e. RR ) |
| 62 |
61
|
adantr |
|- ( ( ph /\ L = 1 ) -> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) e. RR ) |
| 63 |
20 22 24
|
redivcli |
|- ( 4 / 3 ) e. RR |
| 64 |
63
|
a1i |
|- ( ( ph /\ L = 1 ) -> ( 4 / 3 ) e. RR ) |
| 65 |
19 64
|
resubcld |
|- ( ( ph /\ L = 1 ) -> ( L - ( 4 / 3 ) ) e. RR ) |
| 66 |
19
|
recnd |
|- ( ( ph /\ L = 1 ) -> L e. CC ) |
| 67 |
66
|
subid1d |
|- ( ( ph /\ L = 1 ) -> ( L - 0 ) = L ) |
| 68 |
|
3cn |
|- 3 e. CC |
| 69 |
68 24
|
dividi |
|- ( 3 / 3 ) = 1 |
| 70 |
|
3lt4 |
|- 3 < 4 |
| 71 |
|
3pos |
|- 0 < 3 |
| 72 |
22 20 22 71
|
ltdiv1ii |
|- ( 3 < 4 <-> ( 3 / 3 ) < ( 4 / 3 ) ) |
| 73 |
70 72
|
mpbi |
|- ( 3 / 3 ) < ( 4 / 3 ) |
| 74 |
69 73
|
eqbrtrri |
|- 1 < ( 4 / 3 ) |
| 75 |
|
breq1 |
|- ( L = 1 -> ( L < ( 4 / 3 ) <-> 1 < ( 4 / 3 ) ) ) |
| 76 |
75
|
adantl |
|- ( ( ph /\ L = 1 ) -> ( L < ( 4 / 3 ) <-> 1 < ( 4 / 3 ) ) ) |
| 77 |
74 76
|
mpbiri |
|- ( ( ph /\ L = 1 ) -> L < ( 4 / 3 ) ) |
| 78 |
67 77
|
eqbrtrd |
|- ( ( ph /\ L = 1 ) -> ( L - 0 ) < ( 4 / 3 ) ) |
| 79 |
19 31 64 78
|
ltsub23d |
|- ( ( ph /\ L = 1 ) -> ( L - ( 4 / 3 ) ) < 0 ) |
| 80 |
11
|
rpgt0d |
|- ( ph -> 0 < E ) |
| 81 |
80
|
adantr |
|- ( ( ph /\ L = 1 ) -> 0 < E ) |
| 82 |
|
mulltgt0 |
|- ( ( ( ( L - ( 4 / 3 ) ) e. RR /\ ( L - ( 4 / 3 ) ) < 0 ) /\ ( E e. RR /\ 0 < E ) ) -> ( ( L - ( 4 / 3 ) ) x. E ) < 0 ) |
| 83 |
65 79 29 81 82
|
syl22anc |
|- ( ( ph /\ L = 1 ) -> ( ( L - ( 4 / 3 ) ) x. E ) < 0 ) |
| 84 |
|
0cn |
|- 0 e. CC |
| 85 |
|
fsumconst |
|- ( ( ( 0 ... N ) e. Fin /\ 0 e. CC ) -> sum_ i e. ( 0 ... N ) 0 = ( ( # ` ( 0 ... N ) ) x. 0 ) ) |
| 86 |
32 84 85
|
sylancl |
|- ( ph -> sum_ i e. ( 0 ... N ) 0 = ( ( # ` ( 0 ... N ) ) x. 0 ) ) |
| 87 |
|
hashcl |
|- ( ( 0 ... N ) e. Fin -> ( # ` ( 0 ... N ) ) e. NN0 ) |
| 88 |
|
nn0cn |
|- ( ( # ` ( 0 ... N ) ) e. NN0 -> ( # ` ( 0 ... N ) ) e. CC ) |
| 89 |
32 87 88
|
3syl |
|- ( ph -> ( # ` ( 0 ... N ) ) e. CC ) |
| 90 |
89
|
mul01d |
|- ( ph -> ( ( # ` ( 0 ... N ) ) x. 0 ) = 0 ) |
| 91 |
86 90
|
eqtrd |
|- ( ph -> sum_ i e. ( 0 ... N ) 0 = 0 ) |
| 92 |
91
|
adantr |
|- ( ( ph /\ L = 1 ) -> sum_ i e. ( 0 ... N ) 0 = 0 ) |
| 93 |
|
0red |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> 0 e. RR ) |
| 94 |
11
|
rpge0d |
|- ( ph -> 0 <_ E ) |
| 95 |
94
|
adantr |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> 0 <_ E ) |
| 96 |
|
nfv |
|- F/ t i e. ( 0 ... N ) |
| 97 |
3 96
|
nfan |
|- F/ t ( ph /\ i e. ( 0 ... N ) ) |
| 98 |
|
nfv |
|- F/ t 0 <_ ( ( X ` i ) ` S ) |
| 99 |
97 98
|
nfim |
|- F/ t ( ( ph /\ i e. ( 0 ... N ) ) -> 0 <_ ( ( X ` i ) ` S ) ) |
| 100 |
|
fveq2 |
|- ( t = S -> ( ( X ` i ) ` t ) = ( ( X ` i ) ` S ) ) |
| 101 |
100
|
breq2d |
|- ( t = S -> ( 0 <_ ( ( X ` i ) ` t ) <-> 0 <_ ( ( X ` i ) ` S ) ) ) |
| 102 |
101
|
imbi2d |
|- ( t = S -> ( ( ( ph /\ i e. ( 0 ... N ) ) -> 0 <_ ( ( X ` i ) ` t ) ) <-> ( ( ph /\ i e. ( 0 ... N ) ) -> 0 <_ ( ( X ` i ) ` S ) ) ) ) |
| 103 |
14
|
3expia |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> ( t e. T -> 0 <_ ( ( X ` i ) ` t ) ) ) |
| 104 |
103
|
com12 |
|- ( t e. T -> ( ( ph /\ i e. ( 0 ... N ) ) -> 0 <_ ( ( X ` i ) ` t ) ) ) |
| 105 |
47 99 102 104
|
vtoclgaf |
|- ( S e. T -> ( ( ph /\ i e. ( 0 ... N ) ) -> 0 <_ ( ( X ` i ) ` S ) ) ) |
| 106 |
58 105
|
mpcom |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> 0 <_ ( ( X ` i ) ` S ) ) |
| 107 |
33 59 95 106
|
mulge0d |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> 0 <_ ( E x. ( ( X ` i ) ` S ) ) ) |
| 108 |
32 93 60 107
|
fsumle |
|- ( ph -> sum_ i e. ( 0 ... N ) 0 <_ sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) ) |
| 109 |
108
|
adantr |
|- ( ( ph /\ L = 1 ) -> sum_ i e. ( 0 ... N ) 0 <_ sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) ) |
| 110 |
92 109
|
eqbrtrrd |
|- ( ( ph /\ L = 1 ) -> 0 <_ sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) ) |
| 111 |
30 31 62 83 110
|
ltletrd |
|- ( ( ph /\ L = 1 ) -> ( ( L - ( 4 / 3 ) ) x. E ) < sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) ) |
| 112 |
|
elfzelz |
|- ( L e. ( 1 ... N ) -> L e. ZZ ) |
| 113 |
|
zre |
|- ( L e. ZZ -> L e. RR ) |
| 114 |
8 112 113
|
3syl |
|- ( ph -> L e. RR ) |
| 115 |
20
|
a1i |
|- ( ph -> 4 e. RR ) |
| 116 |
22
|
a1i |
|- ( ph -> 3 e. RR ) |
| 117 |
24
|
a1i |
|- ( ph -> 3 =/= 0 ) |
| 118 |
115 116 117
|
redivcld |
|- ( ph -> ( 4 / 3 ) e. RR ) |
| 119 |
114 118
|
resubcld |
|- ( ph -> ( L - ( 4 / 3 ) ) e. RR ) |
| 120 |
119 28
|
remulcld |
|- ( ph -> ( ( L - ( 4 / 3 ) ) x. E ) e. RR ) |
| 121 |
120
|
adantr |
|- ( ( ph /\ -. L = 1 ) -> ( ( L - ( 4 / 3 ) ) x. E ) e. RR ) |
| 122 |
16
|
a1i |
|- ( ph -> 1 e. RR ) |
| 123 |
28 6
|
nndivred |
|- ( ph -> ( E / N ) e. RR ) |
| 124 |
122 123
|
resubcld |
|- ( ph -> ( 1 - ( E / N ) ) e. RR ) |
| 125 |
114 122
|
resubcld |
|- ( ph -> ( L - 1 ) e. RR ) |
| 126 |
124 125
|
remulcld |
|- ( ph -> ( ( 1 - ( E / N ) ) x. ( L - 1 ) ) e. RR ) |
| 127 |
28 126
|
remulcld |
|- ( ph -> ( E x. ( ( 1 - ( E / N ) ) x. ( L - 1 ) ) ) e. RR ) |
| 128 |
127
|
adantr |
|- ( ( ph /\ -. L = 1 ) -> ( E x. ( ( 1 - ( E / N ) ) x. ( L - 1 ) ) ) e. RR ) |
| 129 |
|
fzfid |
|- ( ph -> ( 0 ... ( L - 2 ) ) e. Fin ) |
| 130 |
8
|
elfzelzd |
|- ( ph -> L e. ZZ ) |
| 131 |
|
2z |
|- 2 e. ZZ |
| 132 |
131
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 133 |
130 132
|
zsubcld |
|- ( ph -> ( L - 2 ) e. ZZ ) |
| 134 |
6
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 135 |
130
|
zred |
|- ( ph -> L e. RR ) |
| 136 |
|
2re |
|- 2 e. RR |
| 137 |
136
|
a1i |
|- ( ph -> 2 e. RR ) |
| 138 |
135 137
|
resubcld |
|- ( ph -> ( L - 2 ) e. RR ) |
| 139 |
6
|
nnred |
|- ( ph -> N e. RR ) |
| 140 |
|
0le2 |
|- 0 <_ 2 |
| 141 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 142 |
141 137 135
|
lesub2d |
|- ( ph -> ( 0 <_ 2 <-> ( L - 2 ) <_ ( L - 0 ) ) ) |
| 143 |
140 142
|
mpbii |
|- ( ph -> ( L - 2 ) <_ ( L - 0 ) ) |
| 144 |
130
|
zcnd |
|- ( ph -> L e. CC ) |
| 145 |
144
|
subid1d |
|- ( ph -> ( L - 0 ) = L ) |
| 146 |
143 145
|
breqtrd |
|- ( ph -> ( L - 2 ) <_ L ) |
| 147 |
|
elfzle2 |
|- ( L e. ( 1 ... N ) -> L <_ N ) |
| 148 |
8 147
|
syl |
|- ( ph -> L <_ N ) |
| 149 |
138 135 139 146 148
|
letrd |
|- ( ph -> ( L - 2 ) <_ N ) |
| 150 |
133 134 149
|
3jca |
|- ( ph -> ( ( L - 2 ) e. ZZ /\ N e. ZZ /\ ( L - 2 ) <_ N ) ) |
| 151 |
|
eluz2 |
|- ( N e. ( ZZ>= ` ( L - 2 ) ) <-> ( ( L - 2 ) e. ZZ /\ N e. ZZ /\ ( L - 2 ) <_ N ) ) |
| 152 |
150 151
|
sylibr |
|- ( ph -> N e. ( ZZ>= ` ( L - 2 ) ) ) |
| 153 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( L - 2 ) ) -> ( 0 ... ( L - 2 ) ) C_ ( 0 ... N ) ) |
| 154 |
152 153
|
syl |
|- ( ph -> ( 0 ... ( L - 2 ) ) C_ ( 0 ... N ) ) |
| 155 |
154
|
sselda |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> i e. ( 0 ... N ) ) |
| 156 |
155 59
|
syldan |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( ( X ` i ) ` S ) e. RR ) |
| 157 |
129 156
|
fsumrecl |
|- ( ph -> sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) e. RR ) |
| 158 |
28 157
|
remulcld |
|- ( ph -> ( E x. sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) ) e. RR ) |
| 159 |
158
|
adantr |
|- ( ( ph /\ -. L = 1 ) -> ( E x. sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) ) e. RR ) |
| 160 |
28 125
|
remulcld |
|- ( ph -> ( E x. ( L - 1 ) ) e. RR ) |
| 161 |
28 28
|
remulcld |
|- ( ph -> ( E x. E ) e. RR ) |
| 162 |
160 161
|
resubcld |
|- ( ph -> ( ( E x. ( L - 1 ) ) - ( E x. E ) ) e. RR ) |
| 163 |
125 6
|
nndivred |
|- ( ph -> ( ( L - 1 ) / N ) e. RR ) |
| 164 |
161 163
|
remulcld |
|- ( ph -> ( ( E x. E ) x. ( ( L - 1 ) / N ) ) e. RR ) |
| 165 |
160 164
|
resubcld |
|- ( ph -> ( ( E x. ( L - 1 ) ) - ( ( E x. E ) x. ( ( L - 1 ) / N ) ) ) e. RR ) |
| 166 |
125 28
|
resubcld |
|- ( ph -> ( ( L - 1 ) - E ) e. RR ) |
| 167 |
122 28
|
readdcld |
|- ( ph -> ( 1 + E ) e. RR ) |
| 168 |
16 22 24
|
redivcli |
|- ( 1 / 3 ) e. RR |
| 169 |
168
|
a1i |
|- ( ph -> ( 1 / 3 ) e. RR ) |
| 170 |
28 169 122 12
|
ltadd2dd |
|- ( ph -> ( 1 + E ) < ( 1 + ( 1 / 3 ) ) ) |
| 171 |
|
ax-1cn |
|- 1 e. CC |
| 172 |
68 171 68 24
|
divdiri |
|- ( ( 3 + 1 ) / 3 ) = ( ( 3 / 3 ) + ( 1 / 3 ) ) |
| 173 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
| 174 |
173
|
oveq1i |
|- ( ( 3 + 1 ) / 3 ) = ( 4 / 3 ) |
| 175 |
69
|
oveq1i |
|- ( ( 3 / 3 ) + ( 1 / 3 ) ) = ( 1 + ( 1 / 3 ) ) |
| 176 |
172 174 175
|
3eqtr3ri |
|- ( 1 + ( 1 / 3 ) ) = ( 4 / 3 ) |
| 177 |
170 176
|
breqtrdi |
|- ( ph -> ( 1 + E ) < ( 4 / 3 ) ) |
| 178 |
167 118 114 177
|
ltsub2dd |
|- ( ph -> ( L - ( 4 / 3 ) ) < ( L - ( 1 + E ) ) ) |
| 179 |
171
|
a1i |
|- ( ph -> 1 e. CC ) |
| 180 |
11
|
rpcnd |
|- ( ph -> E e. CC ) |
| 181 |
144 179 180
|
subsub4d |
|- ( ph -> ( ( L - 1 ) - E ) = ( L - ( 1 + E ) ) ) |
| 182 |
178 181
|
breqtrrd |
|- ( ph -> ( L - ( 4 / 3 ) ) < ( ( L - 1 ) - E ) ) |
| 183 |
119 166 11 182
|
ltmul1dd |
|- ( ph -> ( ( L - ( 4 / 3 ) ) x. E ) < ( ( ( L - 1 ) - E ) x. E ) ) |
| 184 |
144 179
|
subcld |
|- ( ph -> ( L - 1 ) e. CC ) |
| 185 |
184 180
|
subcld |
|- ( ph -> ( ( L - 1 ) - E ) e. CC ) |
| 186 |
180 185
|
mulcomd |
|- ( ph -> ( E x. ( ( L - 1 ) - E ) ) = ( ( ( L - 1 ) - E ) x. E ) ) |
| 187 |
180 184 180
|
subdid |
|- ( ph -> ( E x. ( ( L - 1 ) - E ) ) = ( ( E x. ( L - 1 ) ) - ( E x. E ) ) ) |
| 188 |
186 187
|
eqtr3d |
|- ( ph -> ( ( ( L - 1 ) - E ) x. E ) = ( ( E x. ( L - 1 ) ) - ( E x. E ) ) ) |
| 189 |
183 188
|
breqtrd |
|- ( ph -> ( ( L - ( 4 / 3 ) ) x. E ) < ( ( E x. ( L - 1 ) ) - ( E x. E ) ) ) |
| 190 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 191 |
|
elfz |
|- ( ( L e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) -> ( L e. ( 1 ... N ) <-> ( 1 <_ L /\ L <_ N ) ) ) |
| 192 |
130 190 134 191
|
syl3anc |
|- ( ph -> ( L e. ( 1 ... N ) <-> ( 1 <_ L /\ L <_ N ) ) ) |
| 193 |
8 192
|
mpbid |
|- ( ph -> ( 1 <_ L /\ L <_ N ) ) |
| 194 |
193
|
simprd |
|- ( ph -> L <_ N ) |
| 195 |
|
zlem1lt |
|- ( ( L e. ZZ /\ N e. ZZ ) -> ( L <_ N <-> ( L - 1 ) < N ) ) |
| 196 |
130 134 195
|
syl2anc |
|- ( ph -> ( L <_ N <-> ( L - 1 ) < N ) ) |
| 197 |
194 196
|
mpbid |
|- ( ph -> ( L - 1 ) < N ) |
| 198 |
6
|
nngt0d |
|- ( ph -> 0 < N ) |
| 199 |
|
ltdiv1 |
|- ( ( ( L - 1 ) e. RR /\ N e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( L - 1 ) < N <-> ( ( L - 1 ) / N ) < ( N / N ) ) ) |
| 200 |
125 139 139 198 199
|
syl112anc |
|- ( ph -> ( ( L - 1 ) < N <-> ( ( L - 1 ) / N ) < ( N / N ) ) ) |
| 201 |
197 200
|
mpbid |
|- ( ph -> ( ( L - 1 ) / N ) < ( N / N ) ) |
| 202 |
6
|
nncnd |
|- ( ph -> N e. CC ) |
| 203 |
6
|
nnne0d |
|- ( ph -> N =/= 0 ) |
| 204 |
202 203
|
dividd |
|- ( ph -> ( N / N ) = 1 ) |
| 205 |
201 204
|
breqtrd |
|- ( ph -> ( ( L - 1 ) / N ) < 1 ) |
| 206 |
28 28 80 80
|
mulgt0d |
|- ( ph -> 0 < ( E x. E ) ) |
| 207 |
|
ltmul2 |
|- ( ( ( ( L - 1 ) / N ) e. RR /\ 1 e. RR /\ ( ( E x. E ) e. RR /\ 0 < ( E x. E ) ) ) -> ( ( ( L - 1 ) / N ) < 1 <-> ( ( E x. E ) x. ( ( L - 1 ) / N ) ) < ( ( E x. E ) x. 1 ) ) ) |
| 208 |
163 122 161 206 207
|
syl112anc |
|- ( ph -> ( ( ( L - 1 ) / N ) < 1 <-> ( ( E x. E ) x. ( ( L - 1 ) / N ) ) < ( ( E x. E ) x. 1 ) ) ) |
| 209 |
205 208
|
mpbid |
|- ( ph -> ( ( E x. E ) x. ( ( L - 1 ) / N ) ) < ( ( E x. E ) x. 1 ) ) |
| 210 |
180 180
|
mulcld |
|- ( ph -> ( E x. E ) e. CC ) |
| 211 |
210
|
mulridd |
|- ( ph -> ( ( E x. E ) x. 1 ) = ( E x. E ) ) |
| 212 |
209 211
|
breqtrd |
|- ( ph -> ( ( E x. E ) x. ( ( L - 1 ) / N ) ) < ( E x. E ) ) |
| 213 |
164 161 160 212
|
ltsub2dd |
|- ( ph -> ( ( E x. ( L - 1 ) ) - ( E x. E ) ) < ( ( E x. ( L - 1 ) ) - ( ( E x. E ) x. ( ( L - 1 ) / N ) ) ) ) |
| 214 |
120 162 165 189 213
|
lttrd |
|- ( ph -> ( ( L - ( 4 / 3 ) ) x. E ) < ( ( E x. ( L - 1 ) ) - ( ( E x. E ) x. ( ( L - 1 ) / N ) ) ) ) |
| 215 |
180 202 203
|
divcld |
|- ( ph -> ( E / N ) e. CC ) |
| 216 |
179 215 184
|
subdird |
|- ( ph -> ( ( 1 - ( E / N ) ) x. ( L - 1 ) ) = ( ( 1 x. ( L - 1 ) ) - ( ( E / N ) x. ( L - 1 ) ) ) ) |
| 217 |
184
|
mullidd |
|- ( ph -> ( 1 x. ( L - 1 ) ) = ( L - 1 ) ) |
| 218 |
217
|
oveq1d |
|- ( ph -> ( ( 1 x. ( L - 1 ) ) - ( ( E / N ) x. ( L - 1 ) ) ) = ( ( L - 1 ) - ( ( E / N ) x. ( L - 1 ) ) ) ) |
| 219 |
216 218
|
eqtrd |
|- ( ph -> ( ( 1 - ( E / N ) ) x. ( L - 1 ) ) = ( ( L - 1 ) - ( ( E / N ) x. ( L - 1 ) ) ) ) |
| 220 |
219
|
oveq2d |
|- ( ph -> ( E x. ( ( 1 - ( E / N ) ) x. ( L - 1 ) ) ) = ( E x. ( ( L - 1 ) - ( ( E / N ) x. ( L - 1 ) ) ) ) ) |
| 221 |
215 184
|
mulcld |
|- ( ph -> ( ( E / N ) x. ( L - 1 ) ) e. CC ) |
| 222 |
180 184 221
|
subdid |
|- ( ph -> ( E x. ( ( L - 1 ) - ( ( E / N ) x. ( L - 1 ) ) ) ) = ( ( E x. ( L - 1 ) ) - ( E x. ( ( E / N ) x. ( L - 1 ) ) ) ) ) |
| 223 |
180 202 184 203
|
div32d |
|- ( ph -> ( ( E / N ) x. ( L - 1 ) ) = ( E x. ( ( L - 1 ) / N ) ) ) |
| 224 |
223
|
oveq2d |
|- ( ph -> ( E x. ( ( E / N ) x. ( L - 1 ) ) ) = ( E x. ( E x. ( ( L - 1 ) / N ) ) ) ) |
| 225 |
184 202 203
|
divcld |
|- ( ph -> ( ( L - 1 ) / N ) e. CC ) |
| 226 |
180 180 225
|
mulassd |
|- ( ph -> ( ( E x. E ) x. ( ( L - 1 ) / N ) ) = ( E x. ( E x. ( ( L - 1 ) / N ) ) ) ) |
| 227 |
224 226
|
eqtr4d |
|- ( ph -> ( E x. ( ( E / N ) x. ( L - 1 ) ) ) = ( ( E x. E ) x. ( ( L - 1 ) / N ) ) ) |
| 228 |
227
|
oveq2d |
|- ( ph -> ( ( E x. ( L - 1 ) ) - ( E x. ( ( E / N ) x. ( L - 1 ) ) ) ) = ( ( E x. ( L - 1 ) ) - ( ( E x. E ) x. ( ( L - 1 ) / N ) ) ) ) |
| 229 |
220 222 228
|
3eqtrd |
|- ( ph -> ( E x. ( ( 1 - ( E / N ) ) x. ( L - 1 ) ) ) = ( ( E x. ( L - 1 ) ) - ( ( E x. E ) x. ( ( L - 1 ) / N ) ) ) ) |
| 230 |
214 229
|
breqtrrd |
|- ( ph -> ( ( L - ( 4 / 3 ) ) x. E ) < ( E x. ( ( 1 - ( E / N ) ) x. ( L - 1 ) ) ) ) |
| 231 |
230
|
adantr |
|- ( ( ph /\ -. L = 1 ) -> ( ( L - ( 4 / 3 ) ) x. E ) < ( E x. ( ( 1 - ( E / N ) ) x. ( L - 1 ) ) ) ) |
| 232 |
179 215
|
subcld |
|- ( ph -> ( 1 - ( E / N ) ) e. CC ) |
| 233 |
|
fsumconst |
|- ( ( ( 0 ... ( L - 2 ) ) e. Fin /\ ( 1 - ( E / N ) ) e. CC ) -> sum_ i e. ( 0 ... ( L - 2 ) ) ( 1 - ( E / N ) ) = ( ( # ` ( 0 ... ( L - 2 ) ) ) x. ( 1 - ( E / N ) ) ) ) |
| 234 |
129 232 233
|
syl2anc |
|- ( ph -> sum_ i e. ( 0 ... ( L - 2 ) ) ( 1 - ( E / N ) ) = ( ( # ` ( 0 ... ( L - 2 ) ) ) x. ( 1 - ( E / N ) ) ) ) |
| 235 |
234
|
adantr |
|- ( ( ph /\ -. L = 1 ) -> sum_ i e. ( 0 ... ( L - 2 ) ) ( 1 - ( E / N ) ) = ( ( # ` ( 0 ... ( L - 2 ) ) ) x. ( 1 - ( E / N ) ) ) ) |
| 236 |
|
0zd |
|- ( ( ph /\ -. L = 1 ) -> 0 e. ZZ ) |
| 237 |
8
|
adantr |
|- ( ( ph /\ -. L = 1 ) -> L e. ( 1 ... N ) ) |
| 238 |
237
|
elfzelzd |
|- ( ( ph /\ -. L = 1 ) -> L e. ZZ ) |
| 239 |
131
|
a1i |
|- ( ( ph /\ -. L = 1 ) -> 2 e. ZZ ) |
| 240 |
238 239
|
zsubcld |
|- ( ( ph /\ -. L = 1 ) -> ( L - 2 ) e. ZZ ) |
| 241 |
|
elnnuz |
|- ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) |
| 242 |
6 241
|
sylib |
|- ( ph -> N e. ( ZZ>= ` 1 ) ) |
| 243 |
|
elfzp12 |
|- ( N e. ( ZZ>= ` 1 ) -> ( L e. ( 1 ... N ) <-> ( L = 1 \/ L e. ( ( 1 + 1 ) ... N ) ) ) ) |
| 244 |
242 243
|
syl |
|- ( ph -> ( L e. ( 1 ... N ) <-> ( L = 1 \/ L e. ( ( 1 + 1 ) ... N ) ) ) ) |
| 245 |
8 244
|
mpbid |
|- ( ph -> ( L = 1 \/ L e. ( ( 1 + 1 ) ... N ) ) ) |
| 246 |
245
|
orcanai |
|- ( ( ph /\ -. L = 1 ) -> L e. ( ( 1 + 1 ) ... N ) ) |
| 247 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 248 |
247
|
a1i |
|- ( ( ph /\ -. L = 1 ) -> ( 1 + 1 ) = 2 ) |
| 249 |
248
|
oveq1d |
|- ( ( ph /\ -. L = 1 ) -> ( ( 1 + 1 ) ... N ) = ( 2 ... N ) ) |
| 250 |
246 249
|
eleqtrd |
|- ( ( ph /\ -. L = 1 ) -> L e. ( 2 ... N ) ) |
| 251 |
|
elfzle1 |
|- ( L e. ( 2 ... N ) -> 2 <_ L ) |
| 252 |
250 251
|
syl |
|- ( ( ph /\ -. L = 1 ) -> 2 <_ L ) |
| 253 |
114
|
adantr |
|- ( ( ph /\ -. L = 1 ) -> L e. RR ) |
| 254 |
136
|
a1i |
|- ( ( ph /\ -. L = 1 ) -> 2 e. RR ) |
| 255 |
253 254
|
subge0d |
|- ( ( ph /\ -. L = 1 ) -> ( 0 <_ ( L - 2 ) <-> 2 <_ L ) ) |
| 256 |
252 255
|
mpbird |
|- ( ( ph /\ -. L = 1 ) -> 0 <_ ( L - 2 ) ) |
| 257 |
236 240 256
|
3jca |
|- ( ( ph /\ -. L = 1 ) -> ( 0 e. ZZ /\ ( L - 2 ) e. ZZ /\ 0 <_ ( L - 2 ) ) ) |
| 258 |
|
eluz2 |
|- ( ( L - 2 ) e. ( ZZ>= ` 0 ) <-> ( 0 e. ZZ /\ ( L - 2 ) e. ZZ /\ 0 <_ ( L - 2 ) ) ) |
| 259 |
257 258
|
sylibr |
|- ( ( ph /\ -. L = 1 ) -> ( L - 2 ) e. ( ZZ>= ` 0 ) ) |
| 260 |
|
hashfz |
|- ( ( L - 2 ) e. ( ZZ>= ` 0 ) -> ( # ` ( 0 ... ( L - 2 ) ) ) = ( ( ( L - 2 ) - 0 ) + 1 ) ) |
| 261 |
259 260
|
syl |
|- ( ( ph /\ -. L = 1 ) -> ( # ` ( 0 ... ( L - 2 ) ) ) = ( ( ( L - 2 ) - 0 ) + 1 ) ) |
| 262 |
|
2cn |
|- 2 e. CC |
| 263 |
262
|
a1i |
|- ( ph -> 2 e. CC ) |
| 264 |
144 263
|
subcld |
|- ( ph -> ( L - 2 ) e. CC ) |
| 265 |
264
|
subid1d |
|- ( ph -> ( ( L - 2 ) - 0 ) = ( L - 2 ) ) |
| 266 |
265
|
oveq1d |
|- ( ph -> ( ( ( L - 2 ) - 0 ) + 1 ) = ( ( L - 2 ) + 1 ) ) |
| 267 |
144 263 179
|
subadd23d |
|- ( ph -> ( ( L - 2 ) + 1 ) = ( L + ( 1 - 2 ) ) ) |
| 268 |
262 171
|
negsubdi2i |
|- -u ( 2 - 1 ) = ( 1 - 2 ) |
| 269 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 270 |
269
|
negeqi |
|- -u ( 2 - 1 ) = -u 1 |
| 271 |
268 270
|
eqtr3i |
|- ( 1 - 2 ) = -u 1 |
| 272 |
271
|
a1i |
|- ( ph -> ( 1 - 2 ) = -u 1 ) |
| 273 |
272
|
oveq2d |
|- ( ph -> ( L + ( 1 - 2 ) ) = ( L + -u 1 ) ) |
| 274 |
144 179
|
negsubd |
|- ( ph -> ( L + -u 1 ) = ( L - 1 ) ) |
| 275 |
273 274
|
eqtrd |
|- ( ph -> ( L + ( 1 - 2 ) ) = ( L - 1 ) ) |
| 276 |
266 267 275
|
3eqtrd |
|- ( ph -> ( ( ( L - 2 ) - 0 ) + 1 ) = ( L - 1 ) ) |
| 277 |
276
|
adantr |
|- ( ( ph /\ -. L = 1 ) -> ( ( ( L - 2 ) - 0 ) + 1 ) = ( L - 1 ) ) |
| 278 |
261 277
|
eqtrd |
|- ( ( ph /\ -. L = 1 ) -> ( # ` ( 0 ... ( L - 2 ) ) ) = ( L - 1 ) ) |
| 279 |
278
|
oveq1d |
|- ( ( ph /\ -. L = 1 ) -> ( ( # ` ( 0 ... ( L - 2 ) ) ) x. ( 1 - ( E / N ) ) ) = ( ( L - 1 ) x. ( 1 - ( E / N ) ) ) ) |
| 280 |
184 232
|
mulcomd |
|- ( ph -> ( ( L - 1 ) x. ( 1 - ( E / N ) ) ) = ( ( 1 - ( E / N ) ) x. ( L - 1 ) ) ) |
| 281 |
280
|
adantr |
|- ( ( ph /\ -. L = 1 ) -> ( ( L - 1 ) x. ( 1 - ( E / N ) ) ) = ( ( 1 - ( E / N ) ) x. ( L - 1 ) ) ) |
| 282 |
235 279 281
|
3eqtrd |
|- ( ( ph /\ -. L = 1 ) -> sum_ i e. ( 0 ... ( L - 2 ) ) ( 1 - ( E / N ) ) = ( ( 1 - ( E / N ) ) x. ( L - 1 ) ) ) |
| 283 |
|
fzfid |
|- ( ( ph /\ -. L = 1 ) -> ( 0 ... ( L - 2 ) ) e. Fin ) |
| 284 |
|
fzn0 |
|- ( ( 0 ... ( L - 2 ) ) =/= (/) <-> ( L - 2 ) e. ( ZZ>= ` 0 ) ) |
| 285 |
259 284
|
sylibr |
|- ( ( ph /\ -. L = 1 ) -> ( 0 ... ( L - 2 ) ) =/= (/) ) |
| 286 |
124
|
ad2antrr |
|- ( ( ( ph /\ -. L = 1 ) /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( 1 - ( E / N ) ) e. RR ) |
| 287 |
|
simpll |
|- ( ( ( ph /\ -. L = 1 ) /\ i e. ( 0 ... ( L - 2 ) ) ) -> ph ) |
| 288 |
155
|
adantlr |
|- ( ( ( ph /\ -. L = 1 ) /\ i e. ( 0 ... ( L - 2 ) ) ) -> i e. ( 0 ... N ) ) |
| 289 |
287 288 59
|
syl2anc |
|- ( ( ( ph /\ -. L = 1 ) /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( ( X ` i ) ` S ) e. RR ) |
| 290 |
57
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> S e. T ) |
| 291 |
|
elfzelz |
|- ( i e. ( 0 ... ( L - 2 ) ) -> i e. ZZ ) |
| 292 |
291
|
zred |
|- ( i e. ( 0 ... ( L - 2 ) ) -> i e. RR ) |
| 293 |
292
|
adantl |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> i e. RR ) |
| 294 |
168
|
a1i |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( 1 / 3 ) e. RR ) |
| 295 |
293 294
|
readdcld |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( i + ( 1 / 3 ) ) e. RR ) |
| 296 |
28
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> E e. RR ) |
| 297 |
295 296
|
remulcld |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( ( i + ( 1 / 3 ) ) x. E ) e. RR ) |
| 298 |
114
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> L e. RR ) |
| 299 |
136
|
a1i |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> 2 e. RR ) |
| 300 |
298 299
|
resubcld |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( L - 2 ) e. RR ) |
| 301 |
300 294
|
readdcld |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( ( L - 2 ) + ( 1 / 3 ) ) e. RR ) |
| 302 |
301 296
|
remulcld |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( ( ( L - 2 ) + ( 1 / 3 ) ) x. E ) e. RR ) |
| 303 |
10 57
|
jca |
|- ( ph -> ( F : T --> RR /\ S e. T ) ) |
| 304 |
303
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( F : T --> RR /\ S e. T ) ) |
| 305 |
|
ffvelcdm |
|- ( ( F : T --> RR /\ S e. T ) -> ( F ` S ) e. RR ) |
| 306 |
304 305
|
syl |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( F ` S ) e. RR ) |
| 307 |
|
elfzle2 |
|- ( i e. ( 0 ... ( L - 2 ) ) -> i <_ ( L - 2 ) ) |
| 308 |
307
|
adantl |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> i <_ ( L - 2 ) ) |
| 309 |
293 300 294 308
|
leadd1dd |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( i + ( 1 / 3 ) ) <_ ( ( L - 2 ) + ( 1 / 3 ) ) ) |
| 310 |
28 80
|
jca |
|- ( ph -> ( E e. RR /\ 0 < E ) ) |
| 311 |
310
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( E e. RR /\ 0 < E ) ) |
| 312 |
|
lemul1 |
|- ( ( ( i + ( 1 / 3 ) ) e. RR /\ ( ( L - 2 ) + ( 1 / 3 ) ) e. RR /\ ( E e. RR /\ 0 < E ) ) -> ( ( i + ( 1 / 3 ) ) <_ ( ( L - 2 ) + ( 1 / 3 ) ) <-> ( ( i + ( 1 / 3 ) ) x. E ) <_ ( ( ( L - 2 ) + ( 1 / 3 ) ) x. E ) ) ) |
| 313 |
295 301 311 312
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( ( i + ( 1 / 3 ) ) <_ ( ( L - 2 ) + ( 1 / 3 ) ) <-> ( ( i + ( 1 / 3 ) ) x. E ) <_ ( ( ( L - 2 ) + ( 1 / 3 ) ) x. E ) ) ) |
| 314 |
309 313
|
mpbid |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( ( i + ( 1 / 3 ) ) x. E ) <_ ( ( ( L - 2 ) + ( 1 / 3 ) ) x. E ) ) |
| 315 |
114 137
|
resubcld |
|- ( ph -> ( L - 2 ) e. RR ) |
| 316 |
315 169
|
readdcld |
|- ( ph -> ( ( L - 2 ) + ( 1 / 3 ) ) e. RR ) |
| 317 |
316 28
|
remulcld |
|- ( ph -> ( ( ( L - 2 ) + ( 1 / 3 ) ) x. E ) e. RR ) |
| 318 |
10 57
|
ffvelcdmd |
|- ( ph -> ( F ` S ) e. RR ) |
| 319 |
125 169
|
resubcld |
|- ( ph -> ( ( L - 1 ) - ( 1 / 3 ) ) e. RR ) |
| 320 |
319 28
|
remulcld |
|- ( ph -> ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) e. RR ) |
| 321 |
|
addrid |
|- ( 1 e. CC -> ( 1 + 0 ) = 1 ) |
| 322 |
321
|
eqcomd |
|- ( 1 e. CC -> 1 = ( 1 + 0 ) ) |
| 323 |
171 322
|
mp1i |
|- ( ph -> 1 = ( 1 + 0 ) ) |
| 324 |
179
|
subidd |
|- ( ph -> ( 1 - 1 ) = 0 ) |
| 325 |
324
|
eqcomd |
|- ( ph -> 0 = ( 1 - 1 ) ) |
| 326 |
325
|
oveq2d |
|- ( ph -> ( 1 + 0 ) = ( 1 + ( 1 - 1 ) ) ) |
| 327 |
|
addsubass |
|- ( ( 1 e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( ( 1 + 1 ) - 1 ) = ( 1 + ( 1 - 1 ) ) ) |
| 328 |
327
|
eqcomd |
|- ( ( 1 e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( 1 + ( 1 - 1 ) ) = ( ( 1 + 1 ) - 1 ) ) |
| 329 |
179 179 179 328
|
syl3anc |
|- ( ph -> ( 1 + ( 1 - 1 ) ) = ( ( 1 + 1 ) - 1 ) ) |
| 330 |
323 326 329
|
3eqtrd |
|- ( ph -> 1 = ( ( 1 + 1 ) - 1 ) ) |
| 331 |
330
|
oveq2d |
|- ( ph -> ( L - 1 ) = ( L - ( ( 1 + 1 ) - 1 ) ) ) |
| 332 |
247
|
a1i |
|- ( ph -> ( 1 + 1 ) = 2 ) |
| 333 |
332
|
oveq1d |
|- ( ph -> ( ( 1 + 1 ) - 1 ) = ( 2 - 1 ) ) |
| 334 |
333
|
oveq2d |
|- ( ph -> ( L - ( ( 1 + 1 ) - 1 ) ) = ( L - ( 2 - 1 ) ) ) |
| 335 |
144 263 179
|
subsubd |
|- ( ph -> ( L - ( 2 - 1 ) ) = ( ( L - 2 ) + 1 ) ) |
| 336 |
331 334 335
|
3eqtrd |
|- ( ph -> ( L - 1 ) = ( ( L - 2 ) + 1 ) ) |
| 337 |
336
|
oveq1d |
|- ( ph -> ( ( L - 1 ) - ( 2 / 3 ) ) = ( ( ( L - 2 ) + 1 ) - ( 2 / 3 ) ) ) |
| 338 |
262 68 24
|
divcli |
|- ( 2 / 3 ) e. CC |
| 339 |
338
|
a1i |
|- ( ph -> ( 2 / 3 ) e. CC ) |
| 340 |
264 179 339
|
addsubassd |
|- ( ph -> ( ( ( L - 2 ) + 1 ) - ( 2 / 3 ) ) = ( ( L - 2 ) + ( 1 - ( 2 / 3 ) ) ) ) |
| 341 |
171 68 24
|
divcli |
|- ( 1 / 3 ) e. CC |
| 342 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 343 |
342
|
oveq1i |
|- ( 3 / 3 ) = ( ( 2 + 1 ) / 3 ) |
| 344 |
262 171 68 24
|
divdiri |
|- ( ( 2 + 1 ) / 3 ) = ( ( 2 / 3 ) + ( 1 / 3 ) ) |
| 345 |
343 69 344
|
3eqtr3ri |
|- ( ( 2 / 3 ) + ( 1 / 3 ) ) = 1 |
| 346 |
171 338 341 345
|
subaddrii |
|- ( 1 - ( 2 / 3 ) ) = ( 1 / 3 ) |
| 347 |
346
|
a1i |
|- ( ph -> ( 1 - ( 2 / 3 ) ) = ( 1 / 3 ) ) |
| 348 |
347
|
oveq2d |
|- ( ph -> ( ( L - 2 ) + ( 1 - ( 2 / 3 ) ) ) = ( ( L - 2 ) + ( 1 / 3 ) ) ) |
| 349 |
337 340 348
|
3eqtrd |
|- ( ph -> ( ( L - 1 ) - ( 2 / 3 ) ) = ( ( L - 2 ) + ( 1 / 3 ) ) ) |
| 350 |
136 22 24
|
redivcli |
|- ( 2 / 3 ) e. RR |
| 351 |
350
|
a1i |
|- ( ph -> ( 2 / 3 ) e. RR ) |
| 352 |
|
1lt2 |
|- 1 < 2 |
| 353 |
22 71
|
pm3.2i |
|- ( 3 e. RR /\ 0 < 3 ) |
| 354 |
16 136 353
|
3pm3.2i |
|- ( 1 e. RR /\ 2 e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) |
| 355 |
|
ltdiv1 |
|- ( ( 1 e. RR /\ 2 e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) -> ( 1 < 2 <-> ( 1 / 3 ) < ( 2 / 3 ) ) ) |
| 356 |
354 355
|
mp1i |
|- ( ph -> ( 1 < 2 <-> ( 1 / 3 ) < ( 2 / 3 ) ) ) |
| 357 |
352 356
|
mpbii |
|- ( ph -> ( 1 / 3 ) < ( 2 / 3 ) ) |
| 358 |
169 351 125 357
|
ltsub2dd |
|- ( ph -> ( ( L - 1 ) - ( 2 / 3 ) ) < ( ( L - 1 ) - ( 1 / 3 ) ) ) |
| 359 |
349 358
|
eqbrtrrd |
|- ( ph -> ( ( L - 2 ) + ( 1 / 3 ) ) < ( ( L - 1 ) - ( 1 / 3 ) ) ) |
| 360 |
316 319 11 359
|
ltmul1dd |
|- ( ph -> ( ( ( L - 2 ) + ( 1 / 3 ) ) x. E ) < ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) ) |
| 361 |
35
|
simprd |
|- ( ph -> -. S e. ( D ` ( L - 1 ) ) ) |
| 362 |
|
oveq1 |
|- ( j = ( L - 1 ) -> ( j - ( 1 / 3 ) ) = ( ( L - 1 ) - ( 1 / 3 ) ) ) |
| 363 |
362
|
oveq1d |
|- ( j = ( L - 1 ) -> ( ( j - ( 1 / 3 ) ) x. E ) = ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) ) |
| 364 |
363
|
breq2d |
|- ( j = ( L - 1 ) -> ( ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) <-> ( F ` t ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) ) ) |
| 365 |
364
|
rabbidv |
|- ( j = ( L - 1 ) -> { t e. T | ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) } = { t e. T | ( F ` t ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) } ) |
| 366 |
134
|
peano2zd |
|- ( ph -> ( N + 1 ) e. ZZ ) |
| 367 |
193
|
simpld |
|- ( ph -> 1 <_ L ) |
| 368 |
139 122
|
readdcld |
|- ( ph -> ( N + 1 ) e. RR ) |
| 369 |
139
|
lep1d |
|- ( ph -> N <_ ( N + 1 ) ) |
| 370 |
114 139 368 194 369
|
letrd |
|- ( ph -> L <_ ( N + 1 ) ) |
| 371 |
190 366 130 367 370
|
elfzd |
|- ( ph -> L e. ( 1 ... ( N + 1 ) ) ) |
| 372 |
144 179
|
npcand |
|- ( ph -> ( ( L - 1 ) + 1 ) = L ) |
| 373 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 374 |
373
|
a1i |
|- ( ph -> ( 0 + 1 ) = 1 ) |
| 375 |
374
|
oveq1d |
|- ( ph -> ( ( 0 + 1 ) ... ( N + 1 ) ) = ( 1 ... ( N + 1 ) ) ) |
| 376 |
371 372 375
|
3eltr4d |
|- ( ph -> ( ( L - 1 ) + 1 ) e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) |
| 377 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 378 |
130 190
|
zsubcld |
|- ( ph -> ( L - 1 ) e. ZZ ) |
| 379 |
|
fzaddel |
|- ( ( ( 0 e. ZZ /\ N e. ZZ ) /\ ( ( L - 1 ) e. ZZ /\ 1 e. ZZ ) ) -> ( ( L - 1 ) e. ( 0 ... N ) <-> ( ( L - 1 ) + 1 ) e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) |
| 380 |
377 134 378 190 379
|
syl22anc |
|- ( ph -> ( ( L - 1 ) e. ( 0 ... N ) <-> ( ( L - 1 ) + 1 ) e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) |
| 381 |
376 380
|
mpbird |
|- ( ph -> ( L - 1 ) e. ( 0 ... N ) ) |
| 382 |
|
rabexg |
|- ( T e. _V -> { t e. T | ( F ` t ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) } e. _V ) |
| 383 |
7 382
|
syl |
|- ( ph -> { t e. T | ( F ` t ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) } e. _V ) |
| 384 |
4 365 381 383
|
fvmptd3 |
|- ( ph -> ( D ` ( L - 1 ) ) = { t e. T | ( F ` t ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) } ) |
| 385 |
361 384
|
neleqtrd |
|- ( ph -> -. S e. { t e. T | ( F ` t ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) } ) |
| 386 |
|
nfcv |
|- F/_ t ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) |
| 387 |
49 50 386
|
nfbr |
|- F/ t ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) |
| 388 |
53
|
breq1d |
|- ( t = S -> ( ( F ` t ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) <-> ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) ) ) |
| 389 |
47 48 387 388
|
elrabf |
|- ( S e. { t e. T | ( F ` t ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) } <-> ( S e. T /\ ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) ) ) |
| 390 |
385 389
|
sylnib |
|- ( ph -> -. ( S e. T /\ ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) ) ) |
| 391 |
|
ianor |
|- ( -. ( S e. T /\ ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) ) <-> ( -. S e. T \/ -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) ) ) |
| 392 |
390 391
|
sylib |
|- ( ph -> ( -. S e. T \/ -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) ) ) |
| 393 |
|
olc |
|- ( S e. T -> ( -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) \/ S e. T ) ) |
| 394 |
393
|
anim1i |
|- ( ( S e. T /\ ( -. S e. T \/ -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) ) ) -> ( ( -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) \/ S e. T ) /\ ( -. S e. T \/ -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) ) ) ) |
| 395 |
57 392 394
|
syl2anc |
|- ( ph -> ( ( -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) \/ S e. T ) /\ ( -. S e. T \/ -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) ) ) ) |
| 396 |
|
orcom |
|- ( ( -. S e. T \/ -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) ) <-> ( -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) \/ -. S e. T ) ) |
| 397 |
396
|
anbi2i |
|- ( ( ( -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) \/ S e. T ) /\ ( -. S e. T \/ -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) ) ) <-> ( ( -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) \/ S e. T ) /\ ( -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) \/ -. S e. T ) ) ) |
| 398 |
395 397
|
sylib |
|- ( ph -> ( ( -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) \/ S e. T ) /\ ( -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) \/ -. S e. T ) ) ) |
| 399 |
|
pm4.43 |
|- ( -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) <-> ( ( -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) \/ S e. T ) /\ ( -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) \/ -. S e. T ) ) ) |
| 400 |
398 399
|
sylibr |
|- ( ph -> -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) ) |
| 401 |
320 318
|
ltnled |
|- ( ph -> ( ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) < ( F ` S ) <-> -. ( F ` S ) <_ ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) ) ) |
| 402 |
400 401
|
mpbird |
|- ( ph -> ( ( ( L - 1 ) - ( 1 / 3 ) ) x. E ) < ( F ` S ) ) |
| 403 |
317 320 318 360 402
|
lttrd |
|- ( ph -> ( ( ( L - 2 ) + ( 1 / 3 ) ) x. E ) < ( F ` S ) ) |
| 404 |
317 318 403
|
ltled |
|- ( ph -> ( ( ( L - 2 ) + ( 1 / 3 ) ) x. E ) <_ ( F ` S ) ) |
| 405 |
404
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( ( ( L - 2 ) + ( 1 / 3 ) ) x. E ) <_ ( F ` S ) ) |
| 406 |
297 302 306 314 405
|
letrd |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( ( i + ( 1 / 3 ) ) x. E ) <_ ( F ` S ) ) |
| 407 |
|
nfcv |
|- F/_ t ( ( i + ( 1 / 3 ) ) x. E ) |
| 408 |
407 50 49
|
nfbr |
|- F/ t ( ( i + ( 1 / 3 ) ) x. E ) <_ ( F ` S ) |
| 409 |
53
|
breq2d |
|- ( t = S -> ( ( ( i + ( 1 / 3 ) ) x. E ) <_ ( F ` t ) <-> ( ( i + ( 1 / 3 ) ) x. E ) <_ ( F ` S ) ) ) |
| 410 |
47 48 408 409
|
elrabf |
|- ( S e. { t e. T | ( ( i + ( 1 / 3 ) ) x. E ) <_ ( F ` t ) } <-> ( S e. T /\ ( ( i + ( 1 / 3 ) ) x. E ) <_ ( F ` S ) ) ) |
| 411 |
290 406 410
|
sylanbrc |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> S e. { t e. T | ( ( i + ( 1 / 3 ) ) x. E ) <_ ( F ` t ) } ) |
| 412 |
|
oveq1 |
|- ( j = i -> ( j + ( 1 / 3 ) ) = ( i + ( 1 / 3 ) ) ) |
| 413 |
412
|
oveq1d |
|- ( j = i -> ( ( j + ( 1 / 3 ) ) x. E ) = ( ( i + ( 1 / 3 ) ) x. E ) ) |
| 414 |
413
|
breq1d |
|- ( j = i -> ( ( ( j + ( 1 / 3 ) ) x. E ) <_ ( F ` t ) <-> ( ( i + ( 1 / 3 ) ) x. E ) <_ ( F ` t ) ) ) |
| 415 |
414
|
rabbidv |
|- ( j = i -> { t e. T | ( ( j + ( 1 / 3 ) ) x. E ) <_ ( F ` t ) } = { t e. T | ( ( i + ( 1 / 3 ) ) x. E ) <_ ( F ` t ) } ) |
| 416 |
|
rabexg |
|- ( T e. _V -> { t e. T | ( ( i + ( 1 / 3 ) ) x. E ) <_ ( F ` t ) } e. _V ) |
| 417 |
7 416
|
syl |
|- ( ph -> { t e. T | ( ( i + ( 1 / 3 ) ) x. E ) <_ ( F ` t ) } e. _V ) |
| 418 |
417
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> { t e. T | ( ( i + ( 1 / 3 ) ) x. E ) <_ ( F ` t ) } e. _V ) |
| 419 |
5 415 155 418
|
fvmptd3 |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( B ` i ) = { t e. T | ( ( i + ( 1 / 3 ) ) x. E ) <_ ( F ` t ) } ) |
| 420 |
411 419
|
eleqtrrd |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> S e. ( B ` i ) ) |
| 421 |
150
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) /\ S e. ( B ` i ) ) -> ( ( L - 2 ) e. ZZ /\ N e. ZZ /\ ( L - 2 ) <_ N ) ) |
| 422 |
421 151
|
sylibr |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) /\ S e. ( B ` i ) ) -> N e. ( ZZ>= ` ( L - 2 ) ) ) |
| 423 |
422 153
|
syl |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) /\ S e. ( B ` i ) ) -> ( 0 ... ( L - 2 ) ) C_ ( 0 ... N ) ) |
| 424 |
|
simp2 |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) /\ S e. ( B ` i ) ) -> i e. ( 0 ... ( L - 2 ) ) ) |
| 425 |
423 424
|
sseldd |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) /\ S e. ( B ` i ) ) -> i e. ( 0 ... N ) ) |
| 426 |
|
elex |
|- ( S e. ( B ` i ) -> S e. _V ) |
| 427 |
426
|
3ad2ant3 |
|- ( ( ph /\ i e. ( 0 ... N ) /\ S e. ( B ` i ) ) -> S e. _V ) |
| 428 |
|
nfcv |
|- F/_ t ( 0 ... N ) |
| 429 |
|
nfrab1 |
|- F/_ t { t e. T | ( ( j + ( 1 / 3 ) ) x. E ) <_ ( F ` t ) } |
| 430 |
428 429
|
nfmpt |
|- F/_ t ( j e. ( 0 ... N ) |-> { t e. T | ( ( j + ( 1 / 3 ) ) x. E ) <_ ( F ` t ) } ) |
| 431 |
5 430
|
nfcxfr |
|- F/_ t B |
| 432 |
|
nfcv |
|- F/_ t i |
| 433 |
431 432
|
nffv |
|- F/_ t ( B ` i ) |
| 434 |
433
|
nfel2 |
|- F/ t S e. ( B ` i ) |
| 435 |
3 96 434
|
nf3an |
|- F/ t ( ph /\ i e. ( 0 ... N ) /\ S e. ( B ` i ) ) |
| 436 |
|
nfv |
|- F/ t ( 1 - ( E / N ) ) < ( ( X ` i ) ` S ) |
| 437 |
435 436
|
nfim |
|- F/ t ( ( ph /\ i e. ( 0 ... N ) /\ S e. ( B ` i ) ) -> ( 1 - ( E / N ) ) < ( ( X ` i ) ` S ) ) |
| 438 |
|
eleq1 |
|- ( t = S -> ( t e. ( B ` i ) <-> S e. ( B ` i ) ) ) |
| 439 |
438
|
3anbi3d |
|- ( t = S -> ( ( ph /\ i e. ( 0 ... N ) /\ t e. ( B ` i ) ) <-> ( ph /\ i e. ( 0 ... N ) /\ S e. ( B ` i ) ) ) ) |
| 440 |
100
|
breq2d |
|- ( t = S -> ( ( 1 - ( E / N ) ) < ( ( X ` i ) ` t ) <-> ( 1 - ( E / N ) ) < ( ( X ` i ) ` S ) ) ) |
| 441 |
439 440
|
imbi12d |
|- ( t = S -> ( ( ( ph /\ i e. ( 0 ... N ) /\ t e. ( B ` i ) ) -> ( 1 - ( E / N ) ) < ( ( X ` i ) ` t ) ) <-> ( ( ph /\ i e. ( 0 ... N ) /\ S e. ( B ` i ) ) -> ( 1 - ( E / N ) ) < ( ( X ` i ) ` S ) ) ) ) |
| 442 |
437 441 15
|
vtoclg1f |
|- ( S e. _V -> ( ( ph /\ i e. ( 0 ... N ) /\ S e. ( B ` i ) ) -> ( 1 - ( E / N ) ) < ( ( X ` i ) ` S ) ) ) |
| 443 |
427 442
|
mpcom |
|- ( ( ph /\ i e. ( 0 ... N ) /\ S e. ( B ` i ) ) -> ( 1 - ( E / N ) ) < ( ( X ` i ) ` S ) ) |
| 444 |
425 443
|
syld3an2 |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) /\ S e. ( B ` i ) ) -> ( 1 - ( E / N ) ) < ( ( X ` i ) ` S ) ) |
| 445 |
420 444
|
mpd3an3 |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( 1 - ( E / N ) ) < ( ( X ` i ) ` S ) ) |
| 446 |
445
|
adantlr |
|- ( ( ( ph /\ -. L = 1 ) /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( 1 - ( E / N ) ) < ( ( X ` i ) ` S ) ) |
| 447 |
283 285 286 289 446
|
fsumlt |
|- ( ( ph /\ -. L = 1 ) -> sum_ i e. ( 0 ... ( L - 2 ) ) ( 1 - ( E / N ) ) < sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) ) |
| 448 |
282 447
|
eqbrtrrd |
|- ( ( ph /\ -. L = 1 ) -> ( ( 1 - ( E / N ) ) x. ( L - 1 ) ) < sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) ) |
| 449 |
126
|
adantr |
|- ( ( ph /\ -. L = 1 ) -> ( ( 1 - ( E / N ) ) x. ( L - 1 ) ) e. RR ) |
| 450 |
157
|
adantr |
|- ( ( ph /\ -. L = 1 ) -> sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) e. RR ) |
| 451 |
310
|
adantr |
|- ( ( ph /\ -. L = 1 ) -> ( E e. RR /\ 0 < E ) ) |
| 452 |
|
ltmul2 |
|- ( ( ( ( 1 - ( E / N ) ) x. ( L - 1 ) ) e. RR /\ sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) e. RR /\ ( E e. RR /\ 0 < E ) ) -> ( ( ( 1 - ( E / N ) ) x. ( L - 1 ) ) < sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) <-> ( E x. ( ( 1 - ( E / N ) ) x. ( L - 1 ) ) ) < ( E x. sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) ) ) ) |
| 453 |
449 450 451 452
|
syl3anc |
|- ( ( ph /\ -. L = 1 ) -> ( ( ( 1 - ( E / N ) ) x. ( L - 1 ) ) < sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) <-> ( E x. ( ( 1 - ( E / N ) ) x. ( L - 1 ) ) ) < ( E x. sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) ) ) ) |
| 454 |
448 453
|
mpbid |
|- ( ( ph /\ -. L = 1 ) -> ( E x. ( ( 1 - ( E / N ) ) x. ( L - 1 ) ) ) < ( E x. sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) ) ) |
| 455 |
121 128 159 231 454
|
lttrd |
|- ( ( ph /\ -. L = 1 ) -> ( ( L - ( 4 / 3 ) ) x. E ) < ( E x. sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) ) ) |
| 456 |
155 60
|
syldan |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( E x. ( ( X ` i ) ` S ) ) e. RR ) |
| 457 |
456
|
adantlr |
|- ( ( ( ph /\ -. L = 1 ) /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( E x. ( ( X ` i ) ` S ) ) e. RR ) |
| 458 |
457
|
recnd |
|- ( ( ( ph /\ -. L = 1 ) /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( E x. ( ( X ` i ) ` S ) ) e. CC ) |
| 459 |
283 458
|
fsumcl |
|- ( ( ph /\ -. L = 1 ) -> sum_ i e. ( 0 ... ( L - 2 ) ) ( E x. ( ( X ` i ) ` S ) ) e. CC ) |
| 460 |
459
|
addridd |
|- ( ( ph /\ -. L = 1 ) -> ( sum_ i e. ( 0 ... ( L - 2 ) ) ( E x. ( ( X ` i ) ` S ) ) + 0 ) = sum_ i e. ( 0 ... ( L - 2 ) ) ( E x. ( ( X ` i ) ` S ) ) ) |
| 461 |
|
0red |
|- ( ( ph /\ -. L = 1 ) -> 0 e. RR ) |
| 462 |
|
fzfid |
|- ( ( ph /\ -. L = 1 ) -> ( ( L - 1 ) ... N ) e. Fin ) |
| 463 |
28
|
adantr |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> E e. RR ) |
| 464 |
|
0zd |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> 0 e. ZZ ) |
| 465 |
134
|
adantr |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> N e. ZZ ) |
| 466 |
|
elfzelz |
|- ( i e. ( ( L - 1 ) ... N ) -> i e. ZZ ) |
| 467 |
466
|
adantl |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> i e. ZZ ) |
| 468 |
|
0red |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> 0 e. RR ) |
| 469 |
125
|
adantr |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> ( L - 1 ) e. RR ) |
| 470 |
466
|
zred |
|- ( i e. ( ( L - 1 ) ... N ) -> i e. RR ) |
| 471 |
470
|
adantl |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> i e. RR ) |
| 472 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 473 |
122 114 122 367
|
lesub1dd |
|- ( ph -> ( 1 - 1 ) <_ ( L - 1 ) ) |
| 474 |
472 473
|
eqbrtrrid |
|- ( ph -> 0 <_ ( L - 1 ) ) |
| 475 |
474
|
adantr |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> 0 <_ ( L - 1 ) ) |
| 476 |
|
simpr |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> i e. ( ( L - 1 ) ... N ) ) |
| 477 |
378
|
adantr |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> ( L - 1 ) e. ZZ ) |
| 478 |
|
elfz |
|- ( ( i e. ZZ /\ ( L - 1 ) e. ZZ /\ N e. ZZ ) -> ( i e. ( ( L - 1 ) ... N ) <-> ( ( L - 1 ) <_ i /\ i <_ N ) ) ) |
| 479 |
467 477 465 478
|
syl3anc |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> ( i e. ( ( L - 1 ) ... N ) <-> ( ( L - 1 ) <_ i /\ i <_ N ) ) ) |
| 480 |
476 479
|
mpbid |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> ( ( L - 1 ) <_ i /\ i <_ N ) ) |
| 481 |
480
|
simpld |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> ( L - 1 ) <_ i ) |
| 482 |
468 469 471 475 481
|
letrd |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> 0 <_ i ) |
| 483 |
|
elfzle2 |
|- ( i e. ( ( L - 1 ) ... N ) -> i <_ N ) |
| 484 |
483
|
adantl |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> i <_ N ) |
| 485 |
464 465 467 482 484
|
elfzd |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> i e. ( 0 ... N ) ) |
| 486 |
485 59
|
syldan |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> ( ( X ` i ) ` S ) e. RR ) |
| 487 |
463 486
|
remulcld |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> ( E x. ( ( X ` i ) ` S ) ) e. RR ) |
| 488 |
487
|
adantlr |
|- ( ( ( ph /\ -. L = 1 ) /\ i e. ( ( L - 1 ) ... N ) ) -> ( E x. ( ( X ` i ) ` S ) ) e. RR ) |
| 489 |
462 488
|
fsumrecl |
|- ( ( ph /\ -. L = 1 ) -> sum_ i e. ( ( L - 1 ) ... N ) ( E x. ( ( X ` i ) ` S ) ) e. RR ) |
| 490 |
283 457
|
fsumrecl |
|- ( ( ph /\ -. L = 1 ) -> sum_ i e. ( 0 ... ( L - 2 ) ) ( E x. ( ( X ` i ) ` S ) ) e. RR ) |
| 491 |
|
fzfid |
|- ( ph -> ( ( L - 1 ) ... N ) e. Fin ) |
| 492 |
180
|
adantr |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> E e. CC ) |
| 493 |
492
|
mul01d |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> ( E x. 0 ) = 0 ) |
| 494 |
485 106
|
syldan |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> 0 <_ ( ( X ` i ) ` S ) ) |
| 495 |
310
|
adantr |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> ( E e. RR /\ 0 < E ) ) |
| 496 |
|
lemul2 |
|- ( ( 0 e. RR /\ ( ( X ` i ) ` S ) e. RR /\ ( E e. RR /\ 0 < E ) ) -> ( 0 <_ ( ( X ` i ) ` S ) <-> ( E x. 0 ) <_ ( E x. ( ( X ` i ) ` S ) ) ) ) |
| 497 |
468 486 495 496
|
syl3anc |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> ( 0 <_ ( ( X ` i ) ` S ) <-> ( E x. 0 ) <_ ( E x. ( ( X ` i ) ` S ) ) ) ) |
| 498 |
494 497
|
mpbid |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> ( E x. 0 ) <_ ( E x. ( ( X ` i ) ` S ) ) ) |
| 499 |
493 498
|
eqbrtrrd |
|- ( ( ph /\ i e. ( ( L - 1 ) ... N ) ) -> 0 <_ ( E x. ( ( X ` i ) ` S ) ) ) |
| 500 |
491 487 499
|
fsumge0 |
|- ( ph -> 0 <_ sum_ i e. ( ( L - 1 ) ... N ) ( E x. ( ( X ` i ) ` S ) ) ) |
| 501 |
500
|
adantr |
|- ( ( ph /\ -. L = 1 ) -> 0 <_ sum_ i e. ( ( L - 1 ) ... N ) ( E x. ( ( X ` i ) ` S ) ) ) |
| 502 |
461 489 490 501
|
leadd2dd |
|- ( ( ph /\ -. L = 1 ) -> ( sum_ i e. ( 0 ... ( L - 2 ) ) ( E x. ( ( X ` i ) ` S ) ) + 0 ) <_ ( sum_ i e. ( 0 ... ( L - 2 ) ) ( E x. ( ( X ` i ) ` S ) ) + sum_ i e. ( ( L - 1 ) ... N ) ( E x. ( ( X ` i ) ` S ) ) ) ) |
| 503 |
460 502
|
eqbrtrrd |
|- ( ( ph /\ -. L = 1 ) -> sum_ i e. ( 0 ... ( L - 2 ) ) ( E x. ( ( X ` i ) ` S ) ) <_ ( sum_ i e. ( 0 ... ( L - 2 ) ) ( E x. ( ( X ` i ) ` S ) ) + sum_ i e. ( ( L - 1 ) ... N ) ( E x. ( ( X ` i ) ` S ) ) ) ) |
| 504 |
156
|
recnd |
|- ( ( ph /\ i e. ( 0 ... ( L - 2 ) ) ) -> ( ( X ` i ) ` S ) e. CC ) |
| 505 |
129 180 504
|
fsummulc2 |
|- ( ph -> ( E x. sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) ) = sum_ i e. ( 0 ... ( L - 2 ) ) ( E x. ( ( X ` i ) ` S ) ) ) |
| 506 |
505
|
adantr |
|- ( ( ph /\ -. L = 1 ) -> ( E x. sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) ) = sum_ i e. ( 0 ... ( L - 2 ) ) ( E x. ( ( X ` i ) ` S ) ) ) |
| 507 |
|
elfzelz |
|- ( j e. ( 0 ... ( L - 2 ) ) -> j e. ZZ ) |
| 508 |
507
|
adantl |
|- ( ( ph /\ j e. ( 0 ... ( L - 2 ) ) ) -> j e. ZZ ) |
| 509 |
508
|
zred |
|- ( ( ph /\ j e. ( 0 ... ( L - 2 ) ) ) -> j e. RR ) |
| 510 |
315
|
adantr |
|- ( ( ph /\ j e. ( 0 ... ( L - 2 ) ) ) -> ( L - 2 ) e. RR ) |
| 511 |
125
|
adantr |
|- ( ( ph /\ j e. ( 0 ... ( L - 2 ) ) ) -> ( L - 1 ) e. RR ) |
| 512 |
|
simpr |
|- ( ( ph /\ j e. ( 0 ... ( L - 2 ) ) ) -> j e. ( 0 ... ( L - 2 ) ) ) |
| 513 |
|
0zd |
|- ( ( ph /\ j e. ( 0 ... ( L - 2 ) ) ) -> 0 e. ZZ ) |
| 514 |
133
|
adantr |
|- ( ( ph /\ j e. ( 0 ... ( L - 2 ) ) ) -> ( L - 2 ) e. ZZ ) |
| 515 |
|
elfz |
|- ( ( j e. ZZ /\ 0 e. ZZ /\ ( L - 2 ) e. ZZ ) -> ( j e. ( 0 ... ( L - 2 ) ) <-> ( 0 <_ j /\ j <_ ( L - 2 ) ) ) ) |
| 516 |
508 513 514 515
|
syl3anc |
|- ( ( ph /\ j e. ( 0 ... ( L - 2 ) ) ) -> ( j e. ( 0 ... ( L - 2 ) ) <-> ( 0 <_ j /\ j <_ ( L - 2 ) ) ) ) |
| 517 |
512 516
|
mpbid |
|- ( ( ph /\ j e. ( 0 ... ( L - 2 ) ) ) -> ( 0 <_ j /\ j <_ ( L - 2 ) ) ) |
| 518 |
517
|
simprd |
|- ( ( ph /\ j e. ( 0 ... ( L - 2 ) ) ) -> j <_ ( L - 2 ) ) |
| 519 |
122 137 114
|
ltsub2d |
|- ( ph -> ( 1 < 2 <-> ( L - 2 ) < ( L - 1 ) ) ) |
| 520 |
352 519
|
mpbii |
|- ( ph -> ( L - 2 ) < ( L - 1 ) ) |
| 521 |
520
|
adantr |
|- ( ( ph /\ j e. ( 0 ... ( L - 2 ) ) ) -> ( L - 2 ) < ( L - 1 ) ) |
| 522 |
509 510 511 518 521
|
lelttrd |
|- ( ( ph /\ j e. ( 0 ... ( L - 2 ) ) ) -> j < ( L - 1 ) ) |
| 523 |
509 511
|
ltnled |
|- ( ( ph /\ j e. ( 0 ... ( L - 2 ) ) ) -> ( j < ( L - 1 ) <-> -. ( L - 1 ) <_ j ) ) |
| 524 |
522 523
|
mpbid |
|- ( ( ph /\ j e. ( 0 ... ( L - 2 ) ) ) -> -. ( L - 1 ) <_ j ) |
| 525 |
524
|
intnanrd |
|- ( ( ph /\ j e. ( 0 ... ( L - 2 ) ) ) -> -. ( ( L - 1 ) <_ j /\ j <_ N ) ) |
| 526 |
378
|
adantr |
|- ( ( ph /\ j e. ( 0 ... ( L - 2 ) ) ) -> ( L - 1 ) e. ZZ ) |
| 527 |
134
|
adantr |
|- ( ( ph /\ j e. ( 0 ... ( L - 2 ) ) ) -> N e. ZZ ) |
| 528 |
|
elfz |
|- ( ( j e. ZZ /\ ( L - 1 ) e. ZZ /\ N e. ZZ ) -> ( j e. ( ( L - 1 ) ... N ) <-> ( ( L - 1 ) <_ j /\ j <_ N ) ) ) |
| 529 |
508 526 527 528
|
syl3anc |
|- ( ( ph /\ j e. ( 0 ... ( L - 2 ) ) ) -> ( j e. ( ( L - 1 ) ... N ) <-> ( ( L - 1 ) <_ j /\ j <_ N ) ) ) |
| 530 |
525 529
|
mtbird |
|- ( ( ph /\ j e. ( 0 ... ( L - 2 ) ) ) -> -. j e. ( ( L - 1 ) ... N ) ) |
| 531 |
530
|
ex |
|- ( ph -> ( j e. ( 0 ... ( L - 2 ) ) -> -. j e. ( ( L - 1 ) ... N ) ) ) |
| 532 |
2 531
|
ralrimi |
|- ( ph -> A. j e. ( 0 ... ( L - 2 ) ) -. j e. ( ( L - 1 ) ... N ) ) |
| 533 |
|
disj |
|- ( ( ( 0 ... ( L - 2 ) ) i^i ( ( L - 1 ) ... N ) ) = (/) <-> A. j e. ( 0 ... ( L - 2 ) ) -. j e. ( ( L - 1 ) ... N ) ) |
| 534 |
532 533
|
sylibr |
|- ( ph -> ( ( 0 ... ( L - 2 ) ) i^i ( ( L - 1 ) ... N ) ) = (/) ) |
| 535 |
534
|
adantr |
|- ( ( ph /\ -. L = 1 ) -> ( ( 0 ... ( L - 2 ) ) i^i ( ( L - 1 ) ... N ) ) = (/) ) |
| 536 |
149
|
adantr |
|- ( ( ph /\ -. L = 1 ) -> ( L - 2 ) <_ N ) |
| 537 |
133 377 134
|
3jca |
|- ( ph -> ( ( L - 2 ) e. ZZ /\ 0 e. ZZ /\ N e. ZZ ) ) |
| 538 |
537
|
adantr |
|- ( ( ph /\ -. L = 1 ) -> ( ( L - 2 ) e. ZZ /\ 0 e. ZZ /\ N e. ZZ ) ) |
| 539 |
|
elfz |
|- ( ( ( L - 2 ) e. ZZ /\ 0 e. ZZ /\ N e. ZZ ) -> ( ( L - 2 ) e. ( 0 ... N ) <-> ( 0 <_ ( L - 2 ) /\ ( L - 2 ) <_ N ) ) ) |
| 540 |
538 539
|
syl |
|- ( ( ph /\ -. L = 1 ) -> ( ( L - 2 ) e. ( 0 ... N ) <-> ( 0 <_ ( L - 2 ) /\ ( L - 2 ) <_ N ) ) ) |
| 541 |
256 536 540
|
mpbir2and |
|- ( ( ph /\ -. L = 1 ) -> ( L - 2 ) e. ( 0 ... N ) ) |
| 542 |
|
fzsplit |
|- ( ( L - 2 ) e. ( 0 ... N ) -> ( 0 ... N ) = ( ( 0 ... ( L - 2 ) ) u. ( ( ( L - 2 ) + 1 ) ... N ) ) ) |
| 543 |
541 542
|
syl |
|- ( ( ph /\ -. L = 1 ) -> ( 0 ... N ) = ( ( 0 ... ( L - 2 ) ) u. ( ( ( L - 2 ) + 1 ) ... N ) ) ) |
| 544 |
267 273 274
|
3eqtrd |
|- ( ph -> ( ( L - 2 ) + 1 ) = ( L - 1 ) ) |
| 545 |
544
|
oveq1d |
|- ( ph -> ( ( ( L - 2 ) + 1 ) ... N ) = ( ( L - 1 ) ... N ) ) |
| 546 |
545
|
uneq2d |
|- ( ph -> ( ( 0 ... ( L - 2 ) ) u. ( ( ( L - 2 ) + 1 ) ... N ) ) = ( ( 0 ... ( L - 2 ) ) u. ( ( L - 1 ) ... N ) ) ) |
| 547 |
546
|
adantr |
|- ( ( ph /\ -. L = 1 ) -> ( ( 0 ... ( L - 2 ) ) u. ( ( ( L - 2 ) + 1 ) ... N ) ) = ( ( 0 ... ( L - 2 ) ) u. ( ( L - 1 ) ... N ) ) ) |
| 548 |
543 547
|
eqtrd |
|- ( ( ph /\ -. L = 1 ) -> ( 0 ... N ) = ( ( 0 ... ( L - 2 ) ) u. ( ( L - 1 ) ... N ) ) ) |
| 549 |
|
fzfid |
|- ( ( ph /\ -. L = 1 ) -> ( 0 ... N ) e. Fin ) |
| 550 |
180
|
adantr |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> E e. CC ) |
| 551 |
59
|
recnd |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> ( ( X ` i ) ` S ) e. CC ) |
| 552 |
550 551
|
mulcld |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> ( E x. ( ( X ` i ) ` S ) ) e. CC ) |
| 553 |
552
|
adantlr |
|- ( ( ( ph /\ -. L = 1 ) /\ i e. ( 0 ... N ) ) -> ( E x. ( ( X ` i ) ` S ) ) e. CC ) |
| 554 |
535 548 549 553
|
fsumsplit |
|- ( ( ph /\ -. L = 1 ) -> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) = ( sum_ i e. ( 0 ... ( L - 2 ) ) ( E x. ( ( X ` i ) ` S ) ) + sum_ i e. ( ( L - 1 ) ... N ) ( E x. ( ( X ` i ) ` S ) ) ) ) |
| 555 |
503 506 554
|
3brtr4d |
|- ( ( ph /\ -. L = 1 ) -> ( E x. sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) ) <_ sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) ) |
| 556 |
120 158 61
|
3jca |
|- ( ph -> ( ( ( L - ( 4 / 3 ) ) x. E ) e. RR /\ ( E x. sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) ) e. RR /\ sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) e. RR ) ) |
| 557 |
556
|
adantr |
|- ( ( ph /\ -. L = 1 ) -> ( ( ( L - ( 4 / 3 ) ) x. E ) e. RR /\ ( E x. sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) ) e. RR /\ sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) e. RR ) ) |
| 558 |
|
ltletr |
|- ( ( ( ( L - ( 4 / 3 ) ) x. E ) e. RR /\ ( E x. sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) ) e. RR /\ sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) e. RR ) -> ( ( ( ( L - ( 4 / 3 ) ) x. E ) < ( E x. sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) ) /\ ( E x. sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) ) <_ sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) ) -> ( ( L - ( 4 / 3 ) ) x. E ) < sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) ) ) |
| 559 |
557 558
|
syl |
|- ( ( ph /\ -. L = 1 ) -> ( ( ( ( L - ( 4 / 3 ) ) x. E ) < ( E x. sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) ) /\ ( E x. sum_ i e. ( 0 ... ( L - 2 ) ) ( ( X ` i ) ` S ) ) <_ sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) ) -> ( ( L - ( 4 / 3 ) ) x. E ) < sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) ) ) |
| 560 |
455 555 559
|
mp2and |
|- ( ( ph /\ -. L = 1 ) -> ( ( L - ( 4 / 3 ) ) x. E ) < sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) ) |
| 561 |
111 560
|
pm2.61dan |
|- ( ph -> ( ( L - ( 4 / 3 ) ) x. E ) < sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) ) |
| 562 |
|
sumex |
|- sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) e. _V |
| 563 |
100
|
oveq2d |
|- ( t = S -> ( E x. ( ( X ` i ) ` t ) ) = ( E x. ( ( X ` i ) ` S ) ) ) |
| 564 |
563
|
sumeq2sdv |
|- ( t = S -> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) = sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) ) |
| 565 |
|
eqid |
|- ( t e. T |-> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) ) = ( t e. T |-> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) ) |
| 566 |
564 565
|
fvmptg |
|- ( ( S e. T /\ sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) e. _V ) -> ( ( t e. T |-> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) ) ` S ) = sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) ) |
| 567 |
57 562 566
|
sylancl |
|- ( ph -> ( ( t e. T |-> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) ) ` S ) = sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` S ) ) ) |
| 568 |
561 567
|
breqtrrd |
|- ( ph -> ( ( L - ( 4 / 3 ) ) x. E ) < ( ( t e. T |-> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) ) ` S ) ) |